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Patchy Landscapes

Anthropogenic disturbances lead to fragmented landscapes

Recent work has suggested that population dynamics in

heterogeneous habitats depends on the interplay between

fragmentation and dispersal ability

Major challenges: What are the possible mechanisms for

individual movement behavior at an interface? How do these

mechanisms affect population spread rates?
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Invasive Forest Insects

Invasive forest insects are a class of non-native species that have the
ability to easily establish and spread rapidly

Examples include the brown spruce longhorn beetle, asian longhorn beetle
and emerald ash borer (EAB)

EAB was first found near Detroit in 2002

EAB has spread to sixteen other states, as well as, parts of Ontario and
Quebec

Invasions have severe economic impact - removal costs and treatment of
infested trees are estimated to be between $20 and $60 billion

EAB has two dispersal vectors: local dispersal (flying) and non-local
anthropogenic dispersal

We aim to study how local dispersal behaviour influences population spread
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EAB Life Cycle
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Integrodifference Equations

Integrodifference equations are discrete-time, continuous space

equations

Nt(x) : Density of individuals in generation t

Nt
dynamics−−−−−→ f (Nt)

dispersal−−−−−→ Nt+1

Nt+1(x) =

∫
Ω
k(x , y)f (Nt(y); y) dy

f (N; x) : Growth function, k(x , y) : Dispersal kernel

Ω : Landscape in which population resides

5 / 27



Growth function: Homogeneous Landscape

Discrete time, non-overlapping generations

Nt+τ = f (Nt)

f is continuous, monotone increasing, and is bounded above

Beverton-Holt: f (N) = r0N
1+(r0−1)N
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Dispersal Kernel: Homogeneous Landscape

Probability of moving from y to x

k(x , y) = k(x − y) = k(z)

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

space (x)

k(
x,
0)

Laplace Gaussian

Dispersal kernels can be derived from mechanistic movement
models in the form of diffusion equations (Neubert et al. 1995):

ut = Duxx , u(x , 0; y) = δ(x − y)

ut = Duxx − αu, u(x , 0; y) = δ(x − y)
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Spread in Homogeneous Landscapes

Minimal speed of spread (Weinberger, 1982)

c∗ = min
s>0

1

s
ln(RM(s))

asymptotic speed of spread if initial population has compact
support

f is linearly bounded, R = f ′(0)

Moment generating function, M(s) =
∫
k(x)esx dx

For Gaussian kernel: cG =
√

2σ2 ln(R)
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Spread in Homogeneous Landscapes
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IDEs in Patchy Landscapes

Kawasaki and Shigesada used a Laplace kernel for a
fragmented landscape; they assumed the growth function to
be spatially dependent.

Dewhirst and Lutscher included heterogeneity by allowing the
variance of the kernel to depend on initial location.

More mechanistically, VanKirk and Lewis derived kernels on a
single patch with a semi-permeable boundary from a random
walk model.

Powell and Zimmerman considered a random walk model with
patch dependent diffusion and settling, and used
homogenization methods to derive approximate spread rates

Robbins used almost the same model, but analyzed exact
persistence conditions and spread rates
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Outline

Individual dispersal model

Dispersal kernel

Patchy landscapes

Population spread
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Dispersal Model

Individuals are dispersing in an infinite, one-dimensional landscape

λ is the step size, p is the movement probability, τ is the time step

β is the probability of dying

α is the probability of settling

ν is the motility coefficient

u(x , t; y) : probability density of finding an individual located at any location x
at any time t given an initial location y

∂u

∂t
=

∂2

∂x2
(ν(x)u)− (α(x) + β(x))u

u(x , 0; y) = δ(x − y)
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Dispersal Kernel

k(x , y) : probability density that a successful disperser settles
at location x at the end of the dispersal period given an initial
location y

α(x)u(x , t; y) is the instantaneous rate an individual is
settling at some time t

Assuming all individuals have died or settled by the end of the
dispersal period, k(x , y) is given by

k(x , y) :=

∫ ∞
0

α(x)u(x , t; y) dt

k(x , y) is the Green’s function of a second-order, linear differential
operator

−δ(x − y) =
∂2

∂x2

(
ν(x)

α(x)
k(x , y)

)
− α(x) + β(x)

α(x)
k(x , y)
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Homogeneous Landscape

The dispersal kernel is given by

k(x , 0) := k(x) =
α

2
√
ν(α + β)

exp

(
−
√
α + β

ν
|x |
)
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Patchy Habitats

Landscape ecologists typically study populations on patchy or

fragmented landscapes

Patches are classified according to local population growth:

good (source) and bad (sink)

Parameter functions are piecewise constant

At the boundary of a good and bad patch, we require

interface conditions
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Behaviour at an Interface

Movement decisions at the interface may be different than movement
rules within a particular patch

Interface

λ2 p2
λ1 p1

λ1 p1λ2 p2

λ2 p0 z2

λ1 p0 z1

within patch movement:

movement from an interface:

λ i pi

λ i zi p0

νi=
λi p i
2 τ

α1,β1α2,β2 α0,β0

16 / 27



Behaviour at an Interface

Movement decisions at the interface may be different than movement
rules within a particular patch

Interface

λ2 p2
λ1 p1

λ1 p1λ2 p2

λ2 p0 z2

λ1 p0 z1

within patch movement:

movement from an interface:

λ i pi

λ i zi p0

νi=
λi p i
2 τ

α1,β1α2,β2 α0,β0

16 / 27



Interface Conditions

If movement decisions at an interface are the same as movement
decisions within a patch (Nagylaki, 1976):

u(x , 0−) = u(x , 0+), ux(x , 0−) =
ν1

ν2
ux(x , 0+)

If movement decisions at an interface and within a patch are different,
two cases arise (Ovaskainen and Cornell, 2003):

Different Movement Probabilities (pi ):

u(x , 0−) =
(1− z)ν1

(1 + z)ν2
u(x , 0+), ux(x , 0−) =

ν1

ν2
ux(x , 0+)

z1 = 1−z
2

, z2 = 1+z
2

Different Step Sizes (λi ):

u(x , 0−) =
(1− z)

√
ν1

(1 + z)
√
ν2

u(x , 0+), ux(x , 0−) =
ν1

ν2
ux(x , 0+)
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Dispersal Kernel in a Patchy Landscape

For illustrative purposes, we consider a patchy landscape with
five good patches

ν1 = 2, ν2 = 1.5
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Traveling Periodic Waves and the Spreading Speed

Assuming that a population persists, perhaps the most
important quantity to consider is the spread rate of the
population and its dependence on parameters

We analyze an IDE on an l-periodic landscape consisting of
good patches (source) of length l1 and bad patches (sink) of
length l2

Model parameters are assumed to be l-periodic, piecewise
constant and f (·; x) = f (·; x + l)

Source: Beverton-Holt growth, i.e. f (N) = r0N
1+(r0−1)N

Sink: f (N) = r0N, 0 ≤ r0 < 1
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Traveling Periodic Waves: Numerical Example
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Traveling Waves and Spreading Speeds

Recall, the IDE is given by

Nt+1(x) =

∫ ∞
−∞

f (Nt(y); y)k(x , y) dy

Existence of a traveling periodic wave and corresponding spreading speed
follows from Weinberger, 2002; look for solutions of the form
Nt(x) = Nt(x − c)

Near the wave front, we make the traveling wave ansatz

Nt(x) = exp(−s(x − ct))g(x)

where g(x) = g(x + l), s is the shape parameter and c is the wave speed

Linearizing the IDE, substituting in the ansatz, and recalling properties of
k(x , y), one can derive the following ODE relating c and s

Ψ′′(x) + m(x)Ψ(x)

(
exp(−sc)r̂(x)− 1

)
= 0

where Ψ(x) = ν(x)
α(x)

g(x) exp(−sx) and m(x) = α(x)+β(x)
ν(x)

From the ODE, we obtain a relation between the wave speed and the
shape parameter of the wave. Minimizing this expression, we obtain the
minimal wave speed.
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Minimal Spreading Speed
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If ν1 = ν2, qualitative behavior of obtained spreading speeds is
the same
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Minimal Spreading Speed
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Minimal Spreading Speed
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Minimal Spreading Speed
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Discussion

A useful characterization of the dispersal kernel is as the
Green’s function of a differential operator

Explicit modelling of individual movement rules in patchy
landscapes, in particular individual responses at an interface,
may lead to discontinuous dispersal kernels

Understanding individual movement behaviour at an interface
is crucial when studying population spread (and persistence!)

Recent studies on the Emerald Ash Borer have focused on
studying understanding local dispersal behaviour of EAB in
newly established populations - we hope to provide some
insight here.
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