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Patchy Landscapes

@ Anthropogenic disturbances lead to fragmented landscapes

@ Recent work has suggested that population dynamics in
heterogeneous habitats depends on the interplay between

fragmentation and dispersal ability

@ Major challenges: What are the possible mechanisms for
individual movement behavior at an interface? How do these

mechanisms affect population spread rates?



Invasive Forest Insects

@ Invasive forest insects are a class of non-native species that have the
ability to easily establish and spread rapidly

@ Examples include the brown spruce longhorn beetle, asian longhorn beetle
and emerald ash borer (EAB)

@ EAB was first found near Detroit in 2002

@ EAB has spread to sixteen other states, as well as, parts of Ontario and
Quebec

@ Invasions have severe economic impact - removal costs and treatment of
infested trees are estimated to be between $20 and $60 billion

@ EAB has two dispersal vectors: local dispersal (flying) and non-local
anthropogenic dispersal
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@ EAB has spread to sixteen other states, as well as, parts of Ontario and
Quebec

@ Invasions have severe economic impact - removal costs and treatment of
infested trees are estimated to be between $20 and $60 billion

@ EAB has two dispersal vectors: local dispersal (flying) and non-local
anthropogenic dispersal

We aim to study how local dispersal behaviour influences population spread



EAB Life Cycle




Integrodifference Equations

Integrodifference equations are discrete-time, continuous space
equations

N¢(x) : Density of individuals in generation t

dispersal

f(N;) ——

dynamics

N Nt i1

Net1(x) z/Qk(va)f(Nt(y);y) dy

f(N;x) : Growth function, k(x,y) : Dispersal kernel

Q : Landscape in which population resides



Discrete time, non-overlapping generations
Nt+7’ - f(Nt)
f is continuous, monotone increasing, and is bounded above

Beverton-Holt: f(N) = %




Dispersal Kernel: Homogeneous Landscape

Probability of moving from y to x

k(x,y) = k(x —y) = k(2)
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space (z)

Dispersal kernels can be derived from mechanistic movement
models in the form of diffusion equations (Neubert et al. 1995):

ur = Duyy, U(X-,O;)/):(;(X*)/)
ur = Duyy — auu, u(x,0;y) =d(x —y)



Spread in Homogeneous Landscapes

Minimal speed of spread (Weinberger, 1982)
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asymptotic speed of spread if initial population has compact
support

f is linearly bounded, R = f'(0)

Moment generating function, M(s) = [ k(x)e™ dx

For Gaussian kernel: ¢ = /202 In(R)



Spread in Homogeneous Landscapes
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IDEs in Patchy Landscapes

@ Kawasaki and Shigesada used a Laplace kernel for a
fragmented landscape; they assumed the growth function to
be spatially dependent.

@ Dewhirst and Lutscher included heterogeneity by allowing the
variance of the kernel to depend on initial location.

@ More mechanistically, VanKirk and Lewis derived kernels on a
single patch with a semi-permeable boundary from a random
walk model.

@ Powell and Zimmerman considered a random walk model with
patch dependent diffusion and settling, and used
homogenization methods to derive approximate spread rates

@ Robbins used almost the same model, but analyzed exact
persistence conditions and spread rates



@ Individual dispersal model

Dispersal kernel

Patchy landscapes

Population spread



Dispersal Model

Individuals are dispersing in an infinite, one-dimensional landscape

B

mobile

settled

@ )\ is the step size, p is the movement probability, 7 is the time step
@ [ is the probability of dying
@ « is the probability of settling

@ v is the motility coefficient



Dispersal Model

Individuals are dispersing in an infinite, one-dimensional landscape

B

mobile

settled

@ )\ is the step size, p is the movement probability, 7 is the time step
@ [ is the probability of dying

@ « is the probability of settling

@ v is the motility coefficient

u(x, t; y) : probability density of finding an individual located at any location x
at any time t given an initial location y

ou ?
T ﬁ(y(x)u) — (ax) + B(x))u

u(x,0;y) = d(x —y)



Dispersal Kernel

@ k(x,y) : probability density that a successful disperser settles
at location x at the end of the dispersal period given an initial
location y

@ a(x)u(x,t;y) is the instantaneous rate an individual is
settling at some time t
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Assuming all individuals have died or settled by the end of the
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Dispersal Kernel

@ k(x,y) : probability density that a successful disperser settles
at location x at the end of the dispersal period given an initial
location y

@ a(x)u(x,t;y) is the instantaneous rate an individual is
settling at some time t

Assuming all individuals have died or settled by the end of the
dispersal period, k(x,y) is given by

k(x,y) = /:0 a(x)u(x, t;y) dt

k(x, y) is the Green's function of a second-order, linear differential
operator
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Homogeneous Landscape

The dispersal kernel is given by

k(x,0) i= k(x) = m exp < _4/2 j 8 x>
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Patchy Habitats

@ Landscape ecologists typically study populations on patchy or

fragmented landscapes

@ Patches are classified according to local population growth:

good (source) and bad (sink)
@ Parameter functions are piecewise constant

@ At the boundary of a good and bad patch, we require

interface conditions



Behaviour at an Interface

@ Movement decisions at the interface may be different than movement
rules within a particular patch
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@ Movement decisions at the interface may be different than movement
rules within a particular patch
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Interface Conditions

@ If movement decisions at an interface are the same as movement
decisions within a patch (Nagylaki, 1976):

u(x,07) = u(x,0"), ux(x,07) = Z—;ux(x,Oﬂ
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two cases arise (Ovaskainen and Cornell, 2003):



Interface Conditions

@ If movement decisions at an interface are the same as movement
decisions within a patch (Nagylaki, 1976):

u(x,07) = u(x,0"), u(x,07) = Z—:ux(x,0+)

@ If movement decisions at an interface and within a patch are different,
two cases arise (Ovaskainen and Cornell, 2003):

Different Movement Probabilities (pi):

7*7(172)V1ux ), u(x,07) = Lu(x,0"
W 07) = (e 0607, un(x07) = Zu(x,07)
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sz27 22

Different Step Sizes (\;):

_ (Q=2z)ym + V= Y (x. 0"
u(x,0 )—mu(x,o ), ux(x,0 )_1/2 (x,07)



Dispersal Kernel in a Patchy Landscape

@ For illustrative purposes, we consider a patchy landscape with
five good patches

0V1:2,V2:1.5

Good Patch

K(x,0)




Traveling Periodic Waves and the Spreading Speed

@ Assuming that a population persists, perhaps the most
important quantity to consider is the spread rate of the
population and its dependence on parameters

@ We analyze an IDE on an /-periodic landscape consisting of
good patches (source) of length /; and bad patches (sink) of
length h

@ Model parameters are assumed to be /-periodic, piecewise
constant and f(+;x) = f(-; x+ /)
@ Source: Beverton-Holt growth, i.e. f(N) = %

@ Sink: f(N)=rN,0<n<1



Traveling Periodic Waves: Numerical Example
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Traveling Waves and Spreading Speeds

@ Recall, the IDE is given by
Nt+1(><):/ F(Ne(y); y)k(x,y)dy

@ Existence of a traveling periodic wave and corresponding spreading speed
follows from Weinberger, 2002; look for solutions of the form
N:(x) = Ne(x — ¢)



Traveling Waves and Spreading Speeds

@ Recall, the IDE is given by
Nr+1(><):/ F(Ne(y); y)k(x,y)dy

@ Existence of a traveling periodic wave and corresponding spreading speed
follows from Weinberger, 2002; look for solutions of the form
N:(x) = Ne(x — ¢)

@ Near the wave front, we make the traveling wave ansatz
N:(x) = exp(—s(x — ct))g(x)
where g(x) = g(x + 1), s is the shape parameter and c is the wave speed

@ Linearizing the IDE, substituting in the ansatz, and recalling properties of
k(x,y), one can derive the following ODE relating ¢ and s

v (x) + m(x)W(x)(exp(—sc)?(x) _ 1) -0
where W(x) = ZEX g(x) exp(—sx) and m(x) = “(XJ&‘?(X)
@ From the ODE, we obtain a relation between the wave speed and the

shape parameter of the wave. Minimizing this expression, we obtain the
minimal wave speed.




Minimal Spreading Speed
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o If 1 = 1, qualitative behavior of obtained spreading speeds is
the same



Minimal Spreading Speed

@ dashed-dot curve - continuous
density
dashed curve - different
movement probabilities
solid curve - different step size
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Minimal Spreading Speed
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Discussion

@ A useful characterization of the dispersal kernel is as the
Green's function of a differential operator

@ Explicit modelling of individual movement rules in patchy
landscapes, in particular individual responses at an interface,
may lead to discontinuous dispersal kernels

@ Understanding individual movement behaviour at an interface
is crucial when studying population spread (and persistence!)

@ Recent studies on the Emerald Ash Borer have focused on
studying understanding local dispersal behaviour of EAB in
newly established populations - we hope to provide some
insight here.
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