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the Dnft Paradox

- During the larval stage, benthic organisms dwell on
the bottom of streams.

- Organisms get eventually detached from the stream
bottom and are dispersed (mostly) downstream.

- Dispersal distance depends on the physical
properties of the river network.

Reproductive rate

Direction and
magnitude of dispersal

Rate of detachment
from bottom

Problem:

Find conditions, in terms of physical and biological
variables, that guarantee population persistence.
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athematical model: jump process.

r

%(x,t) = ru(x,t) — pu(x,t) + ,u/

r
- J

Volumetric density of individuals = A(z)u(x,t)

net growth rate at (1 = rate of detachment

\ "= low population values
% probability of dispersal

A(x) " = river network Kly,x) = to & starting at ¥

Persi '3 | ! '1 =0 i icall bl ‘i
ersistence % extlnct on U = IS asymptotically stable
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Individual trajectories:
advection-diffusion in I’

X :={X;:t>0}

v = water velocity

D diffusion coefficient.

Transition probabilities: Backwards operator:

0P O0°P 0P
E = AP(,ZE,t) — D8—y2 —U@

+ boundary conditions

P(y,x,t)dx := P(X; € dz|Xg = y)

Individuals remain mobile for a

random exponential time: T ~ exp(o)

K(y,z) =P(Xr € dz|Xo =y) =
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Review of the 1D case.

Habitat = river stretch of length L.

Lutscher, Pachepsky, Lewis (2005)
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o) = ru(e,t) — )+ [ Ky oulo. ) dy

net population K(y,z) = probability of

{4 = detachment rate growth dispersal from yto x

Change of time units to ut :
4 N

%(x,t) = (r/p— Du(x,t) +/0 Ky, z)u(y,t) dy

- J

Theorem (critical reproductive rate)

Let wic be the largest eigenvalue of C

r < Teit := (1 — wi)
implies u = 0 is stable (imminent extinction).

Everything Disperses to Miami
University of Miami, Dec 15, 2012

Tuesday, January 22, 13



g eigenvalues: a related Sturm Liouville pro'

: ': “EMW.__.__.._. T

- M‘.—Aw\

Backwards operator:

oP 2P  OP
— =AP=D—— —v—
o~ A 92 oy

Infinitesimal Generator:
Af — Df// L ’Uf/
Dom(.A)
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={f €Coyy: £(0) = (L)

/C(y,a:):/ oe 7' P(y, z,t)dt
0

Resolvent of A :

(o — A)u = %Eu

-

p(

Lu
z)

v
-— e D?¥

= —(pu')’ + qu

Sturm-Liouville operator:

Lf=—f) +af
f(0)=f'(L)=0
DOm(ﬁ) — 6[20,1}]
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N g eigenvalues: K and L

Theorem

The largest eigenvalue of K is wx = 1/,
where 17 is the smallest g-eigenvalue of L.

2
N 1+ QP+%%<V1<1+ QP+7r2Q
/() vl

Non-dimensional numbers: P := —. Q :=

D’

| Proof:
Eigenfunctions:

Lu=f < uy fo (y, ) [ ) _ Ae(%—l—b(u)i)x 1 Bels—b@)ie
= =+1/v2 —4Do(v — 1)

2
G(y,x) = Green's function for [,

\_

[’C(y, z) = q(z)G(y, w)}

Eigenvalues:

tan(lb(v)) = —

21b(v)
P

- e
e P/Q +1
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reproductive rate (1D case)

- P
Terit - 3 _I/_l T D7

Small values of r;; are good!

Theorem (Lutscher et.al. 05, JMR'11)
e r > 1 = population peristence

o r < r.ir = Imminent extinction

Tcrit(O-) l; 7acrit(l) la Tcrit(v) T
Tcrit(D) \L for P > 2.

2

G Tcrit _ (% It’s not enough to have

l—oo U V2 +4Dg @ large habitat!!!

4P
4P + Q(P? + 47?)

Useful bounds:
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"‘.c‘al reproductive rate values

e S

1.0

tant 2
constant — = —
P ol?

’U2

constant QP = —
ol

Different strategies to
reduce rgit

5
logo(P)
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The binary tree case

Habitat = river network.

Everything Disperses to Miami
University of Miami, Dec 15, 2012

Tuesday, January 22, 13



y graphs a model for nver networks

Xos .’“ s
x ‘:EM TR TN —

%(x,t) = (ff—1)u(a:,t)+//C(y,fv)U(y,t) dy

r

Variables Area Length Drift Diffusivity

Transition Conservation of water
AeOUeO + Aelvel — Aeve dta Y, X cl

kernel

v U

0P 0 U,

Dispersion o .
operator E = AP ‘Au|€ = De — Ue

Oy

¢

-

Match A D ’LL ZAezDezu (0) Reflecting h

fluxes Upstream

Dom(.A) i=0.1
Absorbing h

Continuity ue(le) — UeO(O) — ’U,el(()) Downstrearrj

\_
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chastic process in a graph

Existence: Freidlin, Wentzell '93. No info on sample paths!!

F-),

. 00 0.2

Initial edge iniy = « 9,

v Diffusion v Velocity
r <)= 0.5 r <= 1
0 e 0.5 0 = 0.5
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» Sturm-Liouville problem on a graph

bttt b 2 e < — et

p(z) i=e s B dy B DL
(@) = L p(e) ol = A=k

J

\_

Operator: Lfle=—f) +qf.

Dom( ):{fEC(f)ﬂCZ( ); 4/ (e) =0, eE[(F)}

)
dap

“Hydrologic”’ boundary conditions:
Bu([)={f:T—-R; f(¢)=[f'(e) =0, ec U(l)}

Theorem (JMR'11).
v L is self-adjoint w.r.t. dAD.

1. Dispersion kernel:

| Ky, 2) = a@)G(y,x))

v Let f € C(T). Then, 2. Eigenvalue equivalence:
1 1 1
(£) N By, E(p—A/Cf) =D —[Ku:wuc)ﬁv: ;q’%
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en’s function (G Yy el kernel

DR TT—— . -tn o

Computing G in a graph:

Lu=f < uly)= / Gy, 2)f(z) da

K(y,z) = q(x)G(y, x)

Lagrange’'s method for graphs:

(JMR '12) “Green's functions for Sturm-Liouville problems on directed tree graphs”
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Bounds for the eigenvalues of L
and criteria for persistence

1
Ku=wu<< Lvy—= —quv
W
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ional formulation

bttt b 2 e < — et

( Solve: u € Dom(L)N By, —(pu

Extended operator:
P

Dom(L) = {f cC(D)NHYT); pu' € HY(D),

dap

By() = {f : T—R; f(¢) = f'(e) =0, e € U}

-

Associated bilinear form:
N

-

YR — /pu’v’ + quvdAD, wu,v € Dom(F).
r

Dom(F) = {u € HY(T) N C(D); u(¢p) = 0}

\_

Theorem:

~

el F(v,v) All sorts of upper bounds for

veDom(F) (qU, V) Ap the smallest eigenvalue!!!
0
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f*equences

rza 2',....(
: EMM.-._...._....‘ —

Problem in sub-graph I'.:
£Oy = (—p@uY + ¢

u € Dom(£®) N By(T,)

F(u,v) :/ p U + ¢®uv dAD

e

Theorem (JMR'11)

v1(I'.) = min eigenvalue of £ in I'(e)
— (') < v (Te)

Proof:
]:(6) (u(e)7 u(e)) ke

Tuesday, January 22, 13

Application:

Terit (F) Tcrit (Fe) }

~ Upstream subnetworks are very important
- for population persistence:
o If there is persistence in any upstream

sub-network, there is persistence on
the whole network.

o If we want a small r.it on the whole
network, it is enough to reduce it in

~ some upstream sub-network. }
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ationship with Dirichlet boundary conditions.

Hydrologic b.c.  By(l')={f:T—R; f(¢)=f'(e)=0, ec U(')}
Dirichlet b.c. Bp(I')={f:T'—=R; f(e) =0, e € 9"}

~N e I l ~N

Lu = nqu = 1(T') <m(T)
- -

Lema

Every segmento e of U(I') can be en-
larged to a length [, such that

ue(ie,yl(l“)) — 0.

Let T be the resulting network; p, g, and
L the extensions to T, then

m (D) < ().
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illation theory on graphs

(o e -
Definition oscillating non-oscillating
(L, v) oscillates in I' if there exists a solution

to Lu = vqu, u € Dom(L), such that |u| > 0 -
in a sub-graph S C I, and u =0 in 95S.
N

J

[Pokornyi, et.al. (2004) B

n (I') = sup {(L, ) in non-oscillating in I"}
N Z Y

(1 )

I ‘ l l .E' I | e ]jn ]. ]j | | /IJE T S e e S F . OOI :

~ ~

v <v*(I') = (L,v) is non-oscillating in I". | | g(z;0) = Y(Cect s GG
/ ek

\&
- L If v < v5(T), ae,B. € R, there are
@ V() < m(F) <o (T)| | 0007 such that a(wsz) > 0 for al

?‘ Solution to [',u = vqu,

75 (=
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Summary: '/*,(F) <1{1_(P) < v1(Te) 3

Theorem:

The largest rvalue of K is wxe = 1/ ().
The critical reproductive rate satisty:

Tcrit(r) = M(l — w/C)a

i PeQe - Tcrit(F)
ecl 4 + PeQe 1%

- Tcrit(re) = ; 1 4Pe
< min
v ecU(T) 4P, + Q.(P? + 47?) o

An example:
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xperiment? Please?

Populations

14
Distance(Meters)
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Thank you

very much!

Everything Disperses to Miami
University of Miami, Dec 15, 2012

Tuesday, January 22, 13



