Population persistence under advection-diffusion in river networks

Jorge Ramirez

<u>www.unalmed.edu.co/~jmramirezo</u> Associate Professor, Escuela de Matemáticas Universidad Nacional, Sede Medellin.

Multidisciplinary research joint with Julia Jones, Ed Waymire and Enrique Thomann Oregon State University.

TheCommittee OnProbabilityAndStatistics InThePhysicalSciences

www.aueb.gr/bs-cpsps/

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

UNIVERSIDAD NACIONAL DE COLOMBI SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

Motivation: the Drift Paradox

- During the larval stage, benthic organisms dwell on the bottom of streams.
- Organisms get eventually detached from the stream bottom and are dispersed (mostly) downstream.
- Dispersal distance depends on the physical properties of the river network.

Problem:

Find conditions, in terms of physical and biological variables, that guarantee <u>population persistence</u>.

UNIVERSIDAD NACIONAL DE COLOMBI SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

Mathematical model: jump process.

Everything Disperses to Miami University of Miami, Dec 15, 2012

Microscopic model: the dispersion kernel ${\cal K}$

Individual trajectories: advection-diffusion in Γ $X := \{X_t : t \ge 0\}$

- v = water velocity
- D = diffusion coefficient.

Transition probabilities:

$$P(y, x, t) \, \mathrm{d}x := \mathbb{P}(X_t \in \, \mathrm{d}x | X_0 = y)$$

Backwards operator:

$$\frac{\partial P}{\partial t} = \mathcal{A}P(\cdot, x, t) = D\frac{\partial^2 P}{\partial y^2} - v\frac{\partial P}{\partial y}$$

+ boundary conditions

Individuals remain mobile for a random exponential time:

 $T \sim \exp(\sigma)$

$$\mathcal{K}(y,x) = \mathbb{P}(X_T \in \mathrm{d}x | X_0 = y) = \int_0^\infty \sigma e^{-\sigma t} P(y,x,t) \,\mathrm{d}t$$

FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

UNIVERSIDAD

Everything Disperses to Miami University of Miami, Dec 15, 2012

Review of the 1D case. Habitat = river stretch of length L.

Lutscher, Pachepsky, Lewis (2005)

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS Everything Disperses to Miami University of Miami, Dec 15, 2012

The mathematical model in 1D

Theorem (critical reproductive rate)

Let $\omega_{\mathcal{K}}$ be the largest eigenvalue of \mathcal{K} $r < r_{crit} := \mu(1 - \omega_{\mathcal{K}})$ implies $u \equiv 0$ is stable (imminent extinction).

UNIVERSIDAD NACIONAL DE COLOMBI SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

Finding eigenvalues: a related Sturm Liouville problem

Backwards operator:

 $\mathcal{K}(y,x) = \int_0^\infty \sigma e^{-\sigma t} P(y,x,t) \,\mathrm{d}t$

Resolvent of \mathcal{A} : $(\sigma I - \mathcal{A})u = \frac{D}{p}\mathcal{L}u$

$$\mathcal{L}u = -(pu')' + qu$$
$$p(x) := e^{-\frac{v}{D}x} \quad q(x) := \frac{\sigma}{D}p(x)$$

Sturm-Liouville operator:

$$\mathcal{L}f = -(pf')' + qf$$
$$f(0) = f'(L) = 0$$
$$\mathsf{Dom}(\mathcal{L}) = \mathcal{C}^2_{[0,L]}$$

Infinitesimal Generator:

$$\mathcal{A}f = Df'' - vf'$$

$$\mathsf{Dom}(\mathcal{A}) = \{ f \in \mathcal{C}^2_{[0,L]} : f(0) = f'(L) = 0 \}$$

Everything Disperses to Miami University of Miami, Dec 15, 2012

Tuesday, January 22, 13

UNIVERSIDAD NACIONAL DE COLOMBI SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

Finding eigenvalues: ${\cal K}$ and ${\cal L}$

$$egin{aligned} \mathcal{L}u &= -(pu')' + qu \ u(0) &= u'(L) = 0 \end{aligned}$$

$$\mathcal{L}\left(\int_{\Gamma} \mathcal{K}(y, x) f(x) \, \mathrm{d}x\right) = \frac{f(y)}{q(y)}$$

$$G(y, x) = \text{Green's function for } \mathcal{L}$$
$$\mathcal{L}u = f \iff u(y) = \int_0^L G(y, x) f(x) \, \mathrm{d}x$$

 $\mathcal{K}(y,x) = q(x)G(y,x)$

Eigenvalue equivalence:

$$\mathcal{K}u = \omega u \Leftrightarrow \mathcal{L}v = \frac{1}{\omega}qv$$

Theorem

The largest eigenvalue of \mathcal{K} is $\omega_{\mathcal{K}} = 1/\nu_1$, where ν_1 is the smallest *q*-eigenvalue of \mathcal{L} .

$$1 + \frac{1}{4}\mathsf{QP} + \frac{\pi^2}{4}\frac{\mathsf{Q}}{\mathsf{P}} < \nu_1 < 1 + \frac{1}{4}\mathsf{QP} + \pi^2\frac{\mathsf{Q}}{\mathsf{P}}.$$

Non-dimensional numbers: $P := \frac{vl}{D}$, $Q := \frac{v}{\sigma l}$

Proof:

Eigenfunctions:

$$u(x;\nu) = Ae^{(\frac{v}{2D} + b(\nu)i)x} + Be^{(\frac{v}{2D} - b(\nu)i)x}$$
$$b(\nu) := \frac{1}{2D}\sqrt{v^2 - 4D\sigma(\nu - 1)}$$

Eigenvalues:

$$\tan(lb(\nu)) = -\frac{2lb(\nu)}{\mathsf{P}}$$
$$\nu = \frac{(lb(\nu))^2 + \mathsf{P}^2/4}{\mathsf{P}/\mathsf{Q}} + 1$$

Everything Disperses to Miami University of Miami, Dec 15, 2012

Tuesday, January 22, 13

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

Critical reproductive rate (1D case)

$$r_{ ext{crit}} := \mu \left(1 - rac{1}{
u_1}
ight)$$

$$\mathsf{P} := \frac{vl}{D}, \ \mathsf{Q} := \frac{v}{\sigma l}$$

Small values of r_{crit} are good!

Theorem (Lutscher et.al. 05, JMR'11)

- $r > \mu \Rightarrow$ population peristence
- $r < r_{crit} \Rightarrow$ imminent extinction
- $r_{\rm crit}(\sigma) \downarrow$, $r_{\rm crit}(l) \downarrow$, $r_{\rm crit}(v) \uparrow$.

•
$$r_{crit}(D) \downarrow$$
 for $\mathsf{P} > 2\pi$.

•
$$\lim_{l \to \infty} \frac{r_{\text{crit}}}{\mu} = \frac{v^2}{v^2 + 4D\sigma}$$

Lis not enough to have a large habitat!!!

Useful bounds:

$$\frac{4\mathsf{P}}{4\mathsf{P} + \mathsf{Q}(\mathsf{P}^2 + 4\pi^2)} < \frac{r_{\mathsf{crit}}}{\mu} - 1 < \frac{4\mathsf{P}}{4\mathsf{P} + \mathsf{Q}(\mathsf{P}^2 + \pi^2)}$$

SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

UNIVERSIDAD NAC

Everything Disperses to Miami University of Miami, Dec 15, 2012

Critical reproductive rate values

The binary tree case Habitat = river network.

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

Binary graphs: a model for river networks

$$\frac{\partial u}{\partial t}(x,t) = (\bar{r}-1)u(x,t) + \int_{\Gamma} \mathcal{K}(y,x)u(y,t) \, dy$$
Variables Area Length Drift Diffusivity
per edge A_e l_e v_e D_e
(00)
(0)
(1)
Transition
kernel \mathcal{K}
Conservation of water
 $A_{e0}v_{e0} + A_{e1}v_{e1} = A_e v_e$
 dt , $y, x \in \Gamma$
 $y = \overline{l_r}$
Dispersion
operator
 $\frac{\partial P}{\partial t} = \mathcal{A}P$
 $\mathcal{A}u|_e = D_e \frac{\partial^2 u_e}{\partial y^2} - v_e \frac{\partial u_e}{\partial y}$
 $y = 0$
 ϕ
Dom(\mathcal{A})
Match $A_e D_e u'_e(l_e) = \sum_{i=0,1} A_{ei} D_{ei} u'_{ei}(0)$
 $u_r(0) = 0$
Reflecting
 $u_r(0) = 0$
Downstream

UNIVERSIDAD NACIONAL DE COLOMBIA

SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS Everything Disperses to Miami University of Miami, Dec 15, 2012

Tuesday, January 22, 13

The stochastic process in a graph

Existence: Freidlin, Wentzell '93. No info on sample paths!!

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

The Sturm-Liouville problem on a graph

Operator:

$$\mathsf{Dom}(\mathcal{L}) = \left\{ f \in \mathcal{C}(\bar{\Gamma}) \cap \mathcal{C}^2(\Gamma); \frac{\mathrm{d}f}{\mathrm{d}_{AD}}(\boldsymbol{e}) = 0, \ \boldsymbol{e} \in I(\Gamma) \right\}$$

 $\mathcal{L}f|_e = -(pf'_e)' + qf_e$

"Hydrologic" boundary conditions:

$$B_H(\Gamma) = \{ f : \Gamma \to \mathbb{R}; \ f(\phi) = f'(e) = 0, \ e \in U(\Gamma) \}$$

Theorem (JMR'11).

Theorem (JMR'11).

$$\checkmark \mathcal{L} \text{ is self-adjoint w.r.t. } dAD.$$

 $\checkmark \text{ Let } f \in \mathcal{C}(\overline{\Gamma}). \text{ Then,}$
 $\frac{1}{pA}\mathcal{K}f \in \text{Dom}(\mathcal{L}) \cap B_H, \ \mathcal{L}\left(\frac{1}{pA}\mathcal{K}f\right) = \frac{1}{AD}f$
 $\mathcal{K}(y,x) = q(x)G(y,x)$
2. Eigenvalue equivalence:
 $\mathcal{K}u = \omega u \Leftrightarrow \mathcal{L}v = \frac{1}{\omega}qv$

FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

DECOLOMBIA

UNIVERSIDAD NA

Everything Disperses to Miami University of Miami, Dec 15, 2012

e0

 $y = \overline{l_e} e$

e0

1. Dispersion kernel:

The Green's function G y el kernel ${\mathcal K}$

Computing *G* in a graph:

$$\mathcal{L}u = f \iff u(y) = \int_{\Gamma} G(y, x) f(x) \, \mathrm{d}x$$
$$\mathcal{K}(y, x) = q(x) G(y, x)$$

Lagrange's method for graphs: (JMR '12) "Green's functions for Sturm-Liouville problems on directed tree graphs"

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

Bounds for the eigenvalues of \mathcal{L} and criteria for persistence $\mathcal{K}u = \omega u \Leftrightarrow \mathcal{L}v = rac{1}{-qv}$

 ω

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

Everything Disperses to Miami University of Miami, Dec 15, 2012

Variational formulation

Solve:
$$u \in \text{Dom}(\mathcal{L}) \cap B_H$$
, $-(pu'_e)' + (1-\nu)qu_e = 0$

Extended operator:

$$\mathsf{Dom}(\mathcal{L}) = \left\{ f \in \mathcal{C}(\bar{\Gamma}) \cap H^1(\Gamma); \ pu' \in H^1(\Gamma), \ \frac{\mathrm{d}f}{\mathrm{d}_{AD}}(\boldsymbol{e}) = 0, \ \boldsymbol{e} \in I(\Gamma) \right\}$$
$$B_H(\Gamma) = \left\{ f : \Gamma \to \mathbb{R}; \ f(\boldsymbol{\phi}) = f'(\boldsymbol{e}) = 0, \ \boldsymbol{e} \in U(\Gamma) \right\}$$

Associated bilinear form:

$$\mathcal{F}(u,v) = \int_{\Gamma} pu'v' + quv \, \mathrm{d}AD, \quad u,v \in \mathsf{Dom}(\mathcal{F}).$$
$$\mathsf{Dom}(\mathcal{F}) = \{ u \in H^1(\Gamma) \cap \mathcal{C}(\bar{\Gamma}); \ u(\phi) = 0 \}.$$

Theorem:

$$\nu_1(\Gamma) = \inf_{v \in \mathsf{Dom}(\mathcal{F})} \frac{\mathcal{F}(v, v)}{(qv, v)_{AD}}$$

All sorts of upper bounds for the smallest eigenvalue!!!

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

Consequences ...

Problem in sub-graph Γ_e : $\mathcal{L}^{(e)}u = (-p^{(e)}u')' + q^{(e)}u$ $u \in \text{Dom}(\mathcal{L}^{(e)}) \cap B_H(\Gamma_e)$ $\mathcal{F}^{(e)}(u,v) = \int_{\Gamma_e} p^{(e)}u'v' + q^{(e)}uv \, dAD$

Γ

FACULTAD DE CIENCIAS

Theorem (JMR'11)

 $\nu_1(\Gamma_e) = \min \text{ eigenvalue of } \mathcal{L}^{(e)} \text{ in } \Gamma(e)$ $\implies \nu_1(\Gamma) \leqslant \nu_1(\Gamma_e)$

Proof:

Application:

 $r_{ ext{crit}}(\Gamma) \leqslant r_{ ext{crit}}(\Gamma_e)$ Upstream subnetworks are very important for population persistence:

- If there is persistence in any upstream sub-network, there is persistence on the whole network.
- If we want a small *r*_{crit} on the whole network, it is enough to reduce it in some upstream sub-network.

Everything Disperses to Miami University of Miami, Dec 15, 2012

Relationship with Dirichlet boundary conditions.

Hydrologic b.c. $B_H(\Gamma) = \{f : \Gamma \to \mathbb{R}; f(\phi) = f'(e) = 0, e \in U(\Gamma)\}$ Dirichlet b.c. $B_D(\Gamma) = \{f : \Gamma \to \mathbb{R}; f(e) = 0, e \in \partial\Gamma\}$

$$\eta_1(\Gamma) = \text{Least evalue of} \begin{cases} u \in \text{Dom}(\mathcal{L}) \cap B_D \\ \mathcal{L}u = \eta qu \end{cases}$$

Variational formulation: $\Rightarrow \nu_1(\Gamma) < \eta_1(\Gamma)$

Lema

Every segmento e of $U(\Gamma)$ can be enlarged to a length \tilde{l}_e such that

$$u_e(\tilde{l}_e,\nu_1(\Gamma))=0.$$

Let Γ be the resulting network; \tilde{p} , \tilde{q} , and $\tilde{\mathcal{L}}$ the extensions to $\tilde{\Gamma}$, then $\eta_1(\tilde{\Gamma}) \leq \nu_1(\Gamma).$

Everything Disperses to Miami University of Miami, Dec 15, 2012

Oscillation theory on graphs

Definition

 (\mathcal{L}, ν) oscillates in Γ if there exists a solution to $\mathcal{L}u = \nu qu$, $u \in \text{Dom}(\mathcal{L})$, such that |u| > 0in a sub-graph $S \subseteq \Gamma$, and u = 0 in ∂S .

Pokornyi, et.al. (2004) $\eta_1(\Gamma) = \sup_{\nu} \{ (\mathcal{L}, \nu) \text{ in non-oscillating in } \Gamma \}$

Lema Let
$$\nu^*(\Gamma) := \min_e \left\{ 1 + \frac{v_e}{4D_e\sigma} \right\}.$$

 $\nu < \nu^*(\Gamma) \Rightarrow (\tilde{\mathcal{L}}, \nu)$ is non-oscillating in $\tilde{\Gamma}$.

FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

Proof:
Solution to
$$\tilde{\mathcal{L}}u = \nu \tilde{q}u$$
,
 $\tilde{u}(x;\nu) = \sum_{e \in \Gamma} (C_e^{\alpha} e^{\alpha_e x} + C_e^{\beta} e^{\beta_e x}) \mathbb{1}_e(x)$
If $\nu < \nu^*(\Gamma) \quad \alpha \quad \beta \in \mathbb{R}$ there are

oscillating

If $\nu < \nu^*(\Gamma)$, $\alpha_e, \beta_e \in \mathbb{R}$, there are $C_e^{\alpha}, C_e^{\beta}$ such that $\tilde{u}(\nu; x) > 0$ for all $x \in \tilde{\Gamma}$.

Everything Disperses to Miami University of Miami, Dec 15, 2012

non-oscillating

 $oldsymbol{
u}^*(\Gamma)\leqslant\eta_1(ilde{\Gamma})\leqslant
u_1(\Gamma)$

Summary:
$$u^*(\Gamma) \leqslant
u_1(\Gamma) \leqslant
u_1(\Gamma_e)$$

Theorem:

The largest rvalue of \mathcal{K} is $\omega_{\mathcal{K}} = 1/\nu_1(\Gamma)$. The **critical reproductive rate** satisfy:

$$r_{\rm crit}(\Gamma) = \mu(1 - \omega_{\mathcal{K}}),$$

$$\min_{e \in \Gamma} \frac{\mathsf{P}_e \mathsf{Q}_e}{4 + \mathsf{P}_e \mathsf{Q}_e} < \frac{r_{\mathsf{crit}}(\Gamma)}{\mu} \\ < \frac{r_{\mathsf{crit}}(\Gamma_e)}{\mu} \leqslant \min_{e \in U(\Gamma)} 1 - \frac{4\mathsf{P}_e}{4\mathsf{P}_e + \mathsf{Q}_e(\mathsf{P}_e^2 + 4\pi^2)} \blacksquare$$

An example:

Tuesday, January 22, 13

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS **Everything Disperses to Miami University of Miami, Dec 15, 2012**

An experiment? Please?

Thank you very much!

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS Everything Disperses to Miami University of Miami, Dec 15, 2012