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Motivation: the Drift Paradox

Problem:
Find conditions, in terms of physical and biological 
variables, that guarantee population persistence.

- During the larval stage, benthic organisms dwell on 
the bottom of streams.

- Organisms get eventually detached from the stream 
bottom and are dispersed (mostly) downstream.

- Dispersal distance depends on the physical 
properties of the river network.

Reproductive rate

Rate of detachment 
from bottom

vs Direction and 
magnitude of dispersal
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Mathematical model: jump process.

rate of detachmentµ =net growth rate at 
low population valuesr =

probability of dispersal 
to x starting at yK(y, x) =

Volumetric density of individuals =

river network

Imminent 
extinction is asymptotically stablePersistence

max eigenvalue of
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Microscopic model: the dispersion kernel  

X0 = y
XT = x

vD

Individual trajectories: 
advection-diffusion in 

diffusion coefficient.
water velocity

Transition probabilities: Backwards operator:

+ boundary conditions
Individuals remain mobile for a  

random exponential time:
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Review of the 1D case.
Habitat = river stretch of length L.

Lutscher, Pachepsky, Lewis (2005)
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The mathematical model in 1D

Change of time units to µt :

�u

�t
(x, t) = ru(x, t)� µu(x, t) + µ

Z L

0
K(y, x)u(y, t) dy

detachment rateµ = net population 
growthr = K(y, x) = probability of 

dispersal from y to x

Theorem (critical reproductive rate)
Let !K be the largest eigenvalue of K

implies u ⌘ 0 is stable (imminent extinction).
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Finding eigenvalues: a related Sturm Liouville problem

Absorbing Reflecting

Backwards operator:

Infinitesimal Generator:

Resolvent of (�I �A)u =
D

p
Lu

p(x) := e

� v
D x q(x) :=

�

D
p(x)

Sturm-Liouville operator:
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Finding eigenvalues: K  and  L 

G(y, x) = Green’s function for L
Lu = f �⇥ u(y) =

R L
0 G(y, x)f(x) dx

K(y, x) = q(x)G(y, x)

Eigenvalue 
equivalence:

Theorem

Non-dimensional numbers:

Proof:
Eigenfunctions:

Eigenvalues:

The largest eigenvalue of K is !K = 1/⌫1,
where ⌫1 is the smallest q-eigenvalue of L.
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Critical reproductive rate (1D case)

Extinción

Persistencia
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Useful bounds:

Small values of r
crit

are good!

Theorem (Lutscher et.al. 05, JMR’11)
 

It’s not enough to have 
a large habitat!!!

• r > µ ) population peristence

• r < rcrit ) imminent extinction

• rcrit(D) # for P > 2⇡.

Tuesday, January 22, 13



Everything Disperses to Miami

University of Miami, Dec 15, 2012

Critical reproductive rate values
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Different strategies to 
reduce rcrit

constant rcrit

constant

Q

P

=
D

�l2

constant QP =
v2

�D
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The binary tree case
Habitat = river network.
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Binary graphs: a model for river networks
�u

�t
(x, t) = (r̄ � 1)u(x, t) +

Z

�
K(y, x)u(y, t) dy h01i

h00i h0i

�

h1i

r

�

Au|e = De
�2ue

�y2
� ve

�ue

�y

Variables 
per edge Ae

Area

le

Length

De

Diffusivity
ve

Drift

K(y, x) =
Z 1

0
�e��tP (y, x, t) dt, y, x � �Transition 

kernel

�P

�t
= APDispersion 

operator

Match 
fluxes

ue(le) = ue0(0) = ue1(0)

AeDe u0
e(le) =

X

i=0,1

AeiDei u0
ei(0)

Continuity

u0
e(le) = 0 Reflecting 

Upstream

ur(0) = 0 Absorbing 
Downstream

Dom(A)

y=0

y= lr
Conservation of water

Ae0ve0 + Ae1ve1 = Aeve
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The stochastic process in a graph
Existence: Freidlin, Wentzell ’93. No info on sample paths!!
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The Sturm-Liouville problem on a graph

�

y=0

Operator:

“Hydrologic” boundary conditions:

2. Eigenvalue equivalence:

1. Dispersion kernel:
Theorem (JMR’11).
✓

✓

L is self-adjoint w.r.t. dAD.

Let f 2 C(�̄). Then,
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The Green’s function G y el kernel K 

Lagrange’s method for graphs:
(JMR ’12) “Green’s functions for Sturm-Liouville problems on directed tree graphs”

Computing G in a graph:

K(y, x) = q(x)G(y, x)
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Bounds for the eigenvalues of L
and criteria for persistence
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Variational formulation

�(pu0
e)

0 + (1� �)que = 0Solve:

Extended operator:

Associated bilinear form:

Theorem:

All sorts of upper bounds for 
the smallest eigenvalue!!! 
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Consequences ...

�

Upstream subnetworks are very important 
for population persistence:
• If there is persistence in any upstream 
sub-network, there is persistence on 
the whole network.

• If we want a small rcrit on the whole 
network, it is enough to reduce it in 
some upstream sub-network.

Application:

Problem in sub-graph �e:

Theorem (JMR’11) 

both sides

Proof:

min eigenvalue of L(e)
in �(e)
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Relationship with Dirichlet boundary conditions.

Least evalue of

Hydrologic b.c.

Dirichlet b.c.

Variational formulation:

Lema
Every segmento e of U(�) can be en-

larged to a length l̃e such that

Let �̃ be the resulting network; p̃, q̃, and
L̃ the extensions to �̃, then
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Oscillation theory on graphs 

Pokornyi, et.al. (2004)

Definition non-oscillatingoscillating

(L, ⌫) oscillates in � if there exists a solution

to Lu = ⌫qu, u 2 Dom(L), such that |u| > 0
in a sub-graph S ✓ �, and u = 0 in @S.

⌘1(�) = sup
⌫

{(L, ⌫) in non-oscillating in �}

Lema Proof:

⌫ < ⌫⇤(�) ) (L̃, ⌫) is non-oscillating in �̃.

Let ⌫⇤(�) := min
e

n

1 +
ve

4De�

o

.
Solution to L̃u = ⌫q̃u,

If ⌫ < ⌫

⇤(�), ↵e, �e 2 R, there are

C

↵
e , C

�
e such that ũ(⌫; x) > 0 for all

x 2 �̃.
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An example:

Summary:

Theorem:
The largest rvalue of K is !K = 1/⌫1(�).
The critical reproductive rate satisfy:

rcrit(�) = µ(1� !K),
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

 

 

 

 



        

An experiment? Please?

L = 18m

% recovered ≈
Z ti

0

Pyj(HL 2 dt)

v = 0.35m/s, D = 5.6m2/s
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Thank you 
very much!
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