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Both topics involve inspiration from and/or 
collaboration with Chris Cosner 

Topic 1 can be traced in part to 

Cosner showed that partial differential equation models of dispersal in a spatial context could be 
formulated whose equilibria are solutions to a dynamic version of the ideal free distribution in 
continuous space. 
   
This idea of active movement  in response to habitat quality is incorporated in the work I will talk 
about modeling dynamics of the small fish functional group in the Everglades. 



Topic 1: A basic question of Everglades 
research and restoration 

 How do the landscape topography, seasonal hydrology 
(wet and dry seasons), the food base, and movement 
behavior of fish interact to create of available fish 
(through concentration and local stranding) to higher 
trophic levels, especially wading birds? 



Study of fish dynamics in real ecosystem such as the Everglades can be 
difficult … 

The physical environment is 
complex 

Animal movement 
patterns are complex 

Animals are 
enmeshed in 
complex food 
webs 

Aquatic habitat varies through time 

Blue indicates flooded area over the wet season 



Fish movement in the Everglades 

 
 

 

…  However, well-focused questions can sometime be addressed with simple 
models and provide a basis for more detailed modeling. 

Question:  Can diffusional 
movements of fish explain 
the ability of populations of 
small fishes to expand 10’s of 
kilometers  into newly 
flooded  marsh, or is more 
directed movement 
necessary? 

30 km 

DeAngelis, D. L., J. C. Trexler, C. 
Cosner, A. Obaza, and F. Jopp.  
2010.  Fish population dynamics 
in a seasonally varying wetland.  
Ecological Modelling 221:1131-
1137. 

Populations of 
small fishes (< 8 
cm) can expand 
great distances 
across a reflooding 
marsh 



Permanent water 

We assume a simple one-dimensional landscape along an 
elevation gradient over 20 km 

Varying water level 

Elevation gradient 

Distance , s 0 20 km 
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A simple model with only diffusion by fish F(s,t) and a stationary prey, R(s,t), 

whose growth is triggered when the area is flooded (i.e., θ(s,t) = 1 when area 

is flooded) and predation is a predator-dependent functional response, is 

 

 

 

 

 

 

Diffusion model of fish movement 

Prey biomass 

Fish biomass 



Minnow traps embedded in drift fences, underwater photography, and catch-per-unit effort estimates 
with throw traps were  combined to estimate random velocities of fish.  This was shown to vary seasonally 
and among species, ranging from 0.05 to 0.15 m·sec-1 for small poeciliids and killifishes to 0.1 to 1.5 m·sec-

1 for L. marginatus.  
 
These velocities were used to estimate diffusion rates. 

Obaza, A., D. L. DeAngelis, and J. C. Trexler.  2011.  Using data from an 

encounter sampler to model fish dispersal.  Journal of Fish Biology 78:495-513. 

Estimate of 

fish diffusion 

rate was 

needed, and 

was obtained 

from field 

studies 



An alternative hypothesis is active following of resource 
gradient by fish 

But pure diffusion is only one hypothesis.  We alternatively assume that the 

fish can follow that resource gradient, where again the resource growth is 

triggered when an area becomes flooded.  The equations are 

 

 

 

 

 

 

 

Prey biomass 

Fish biomass 

This can be called the ‘dynamic IFD hypothesis’ 



These can be solved numerically over 
a 100 day flooding period with initial 
conditions. 

Fish population does not advance to 1.5 km  

Fish  population advances with flooding front 

Top. Diffusion alone, with 
our best estimate of the 
diffusion coefficient. 

Bottom.  Advective following of 
resource (prey) gradient, given an 
estimate of the advection coefficient. 

Prey 

Prey 

Although the advection coefficient is 
chosen arbitrarily, it is evident that fish 
following the prey gradient is more 
effective than diffusion at filling the 
seasonally flooded marsh.  



Extending the lesson of fish active movement to 
complex situations through simulations 

  

 We are interested in real Everglades landscapes and want to 
address basic problem of fish stranding, as a function of 
topography, hydrology, and fish traits (growth rate, movement 
characteristics). 

 

 This led to some simulation modeling using ideas from the 
preceding implications on fish movement.  



Spatially explicit mechanistic modeling of dynamic 
hydrology driving small fish biomass dispersal and 
stranding 
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Trexler et al., 2002 

The community of small Everglades fishes is of interest here 



   Drying phase: 
   Falling water levels 
 
•  Seasonal marshes disappear 
•  Habitat contracts 
•  Concentration of prey items 
•  Organisms become stranded 

Water Level 

Chick et al., 2004 

Their dynamics during the drying phase 
(December through May) is of particular 
interest, as the fish can become 
concentrated and stranded. 



As water levels go down 
during the dry season, some 
fish become trapped and 
concentrated in isolated 
depressions. 

These concentrations of 
stranded fish provide food for 
wading bird breeding colonies. 

Our goal is to predict the 
spatio- temporal  pattern of 
fish stranding… 

This will help predict food availability for higher trophic levels 



Gulf of Mexico 

10 km 

Greater Everglades, Florida, USA 

For illustrative purposes 
here, we consider a part of 
the real landscape 



Shark River Slough 
USGS’s HAED elevation interpolation mesh 

m
eters 

10 km 



Real Everglades 
landscapes, such as 
this 10 km x 10 km 
section, are 
modeled using 100 x 
100 grid of 100 x 
100 meter cells… 

…using water level 
variation similar to real 
seasonal variation in 
water level 



The different model fish species are 
given different traits 

   Fish 1: 
    
•   Early colonizer of newly 
flooded areas. 
 
•  Tends to become stranded 
in cells during drydown              
                 
 
 

   Fish 3: 
    

•    Late colonizer of newly flooded 
areas 
•    Tends to escape cell during 
drydown.              
                 
 
 

   Fish 2: 
    

•  Intermediate personality 
                 
 
 



CRAYFISH 

NUTRIENTS 

PISCIVOROUS FISH 

FISH 2 FISH 1 FISH 3 

INVERTEBRATES 

PERIPHYTON DETRITUS 

… and they are enmeshed in simplified but 
reasonable food webs  by trophic interactions 

The results of some simulations are shown in the next 
few film clips created by Simeon Yurek. 



As water levels recede, stranding of fish starts to occur (on about day 50 of the 
calendar year) and continues throughout the period of drydown. 



Cumulative strandings of Fish 1, 2, and 3 at end of drydown period 



Conclusion.  We can predict temporal pattern and locations of potential 
concentration of stranded fish (i.e. UTM coordinates) created by 
combinations of landscape topography, seasonal hydrology, and fish 
movement behavior. 
 
We are proposing to study this more exhaustively on the Everglades 
landscape and attempt to confirm results empirically, perhaps by looking 
for phosphorus  fingerprints of fish concentrations.  
 

This shows the temporal 
pattern of fish stranding over 
the whole simulated area, 
showing availability of stranded 
fish over more than 100 days. 



There is increasing theory concerning spatial movement 

Topic 2: Evolutionarily Stable Strategy for Movement 
among Patches When There Are Travel Losses 

This paper played a role in stimulating research on this topic described below. 



Some findings of Cantrell et al. (2007), investigating 
evolutionary stability of dispersal strategies 

 Balanced dispersal, in which the equilibrium densities of organisms 
on each patch are the same whether there is dispersal or not, is 
shown to be an evolutionarily stable strategy in some settings.  

 
 Balanced dispersal leads to an IFD at equilibrium, as all individuals 

have the same fitness and there is no net movement of individuals 
between patches or states. Under general assumptions about the 
underlying population dynamics or species interactions, only such 
ideal free strategies can be evolutionarily stable.  

 
 Under somewhat more restrictive, but still general, assumptions, 

only such ideal free strategies are evolutionarily stable.  



Purpose of work*: Extend ESS to systems in 
which there is loss during movement 

 A usual assumption of the Ideal Free Distribution (IFD) is that 
there are no losses in moving between habitat patches. 
However, because many populations exhibit more or less 
continuous population movement between patches, and 
travelling loss is a frequent factor, it is important to determine 
the effects of losses on expected population movement 
patterns and spatial distributions . 

*Result of a NIMBioS workshop:  Population and Community Ecology 
Consequences of Intraspecific Niche Variation (Bolnick et al. PIs) 
 
DeAngelis, D. L., Gail S. K. Wolkowicz, Yuan Lou, Yuexin Jiang, Mark Novak, Richard Svanback, Marcio 
Araujo, YoungSeung Jo, and Erin Cleary.  2011. The effect of travel loss on evolutionary stable 
distributions of populations in space.  The American Naturalist 178:15-29. 
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We considered bitrophic chains in which the consumer can move freely and 
continuously between two distinct patches with prey that are isolated in each 
patch, and has perfect knowledge of the patches… 

Patch 1 Patch 2 

Consumer, P 

Resource, R 
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… and we also considered tritrophic chains in which only 
the consumer can move freely between patches. 

Patch 1 Patch 2 

Predator, M 

Consumer, P 

Resource, R 



The equations for the two systems are as follows… 

Bitrophic 

Tritrophic 



What we then did is assume 
there is an invading 
competing consumer, P1’ and 

P2’. 

Note that the migration rates 
from  patch 1 to patch 2 are 
the same, m12, while the 
migration rates from patch 2 
to patch 1, m21 and m21’, differ 
in general. 

Tritrophic case 

Bitrophic case is analogous 

Otherwise the two competing 
consumers are identical 



We solved for the variables at equilibrium. 

Equilibrium solution for tritrophic case 



Equilibrium solution for bitrophic case 



What is interesting is that there is a value of m21 that the resident can 
choose such that it cannot be successfully invaded by any possible 
competitor (or any invader can replace any other strategy.  Call it m21,opt. 

Tritrophic case 

Bitrophic case 

This was shown to be an ESS.  We can demonstrate numerically that a 
resident with any m21 ≠ m21,opt , can be successfully invaded by an 
invader that has m21’ = m21,opt  (or that satisfies other conditions, see 
later). Suppose the two patches are entirely identical (all parameters 
are the same for the prey and consumers, in the bitrophic case).  
Suppose also that the resident has m12 = 0.01m21,opt.   
 
Then let an invader with m12 and with m21’ = m21,opt appear. 



Bitrophic model simulations confirm that an invader with m12‘ at the 
optimal value of m21,opt, starting from very small initial values, can 
exclude any alternative resident strategy. 

Parameters 
P1’ and P2’ P1 and P2 

R1 and R2 

Note that although the loss rate, ε21, for returning to patch 1 is huge, ε21 = 0.99, the strategy 
using the optimal return rate easily excludes the strategy using low return rate. 



Invader P1’ and P2’ 

Resident P1 and P2 

R1 and R2 

There are some 
interesting properties of 
this result.  One is the 
following.  Suppose the 
two patches are entirely 
identical (all parameters 
are the same for the 
prey, predator, and 
consumers).   
 
Suppose also that the 
resident has m12 = m21.  
Let an invader with m21’ 
= m21,opt appear with 
low numbers (0.000001). 

Selection for spatial asymmetry: bitrophic case 



Closer views of result, showing the emergence of asymmetry 

P1 and P2 have identical values, 
then start to decline 

P1’ and P2’ increase from very 
low values 

R1 and R2 separate 

P1’ and P2’ approach different 
long-term values. 



Result 

 This implies that the evolutionarily stable strategy for  the 
distribution between identical patches is spatially asymmetric. 

 

 Natural selection creates asymmetry in an initially 
homogeneous system when there is loss in traveling. 



Mathematical details can be 
found in the appendices of 
DeAngelis et al. (2011) and 
in Lou and Wu (2011). 
 
The latter includes proof of 
the ESS for the tritrophic 
case using a Lyapunov 
function approach. 



Implications in nature:  Stream drift 

The passive downstream drift caused by 
one-directional flow of water is a 
common pattern and Müller (1954, 
1982) hypothesized that insects 
compensate for downstream drift by a 
tendency for the adult forms to fly 
upstream to oviposit.  



 
Implications in nature:  Stream drift 

 
 Empirical studies have not conclusively supported the hypothesis that upstream movement 

of adults compensates for the loss, but have shown that substantial degree of compensation 
often occurs (Hershey et al. 1993 for mayflies) 

 

 Anholt (1995) proposed that such upstream movement may not be necessary, as density 
dependence occurs in the aquatic stages of many insects, and drift of individuals from a 
habitat patch may be compensated for by an increase in the survival rate of those remaining 
on the patch.  

 

 Kopp et al. (2001), nevertheless, showed through invasion analysis simulation, that even in 
such cases, upstream movement should be favored, because an insect genotype in which 
losses to drift from upstream to downstream patches are exactly compensated for by 
upstream movement will exclude any genotype for which this is not true.  

 

 Our results are more general than those of Kopp et al. (2001) and imply that if there are 
losses in either direction or both, the optimal level of compensation through upstream 
migration should be less than exact matching. 



Further properties of ESS 
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21
m̂

opt,
m

21

Resident’s migration rate from patch 2 to patch 1 

Invader’s 
migration rate 
from patch 2 
to patch 1 

When neither resident nor invader has the optimal 
migration rate the results are more complex. 



Note that if neither of the consumers has a travel rate exactly at m , 
then the sizes of the resident and invader populations is complex. 

If both m12 and m12’ are on the same side of m21,opt , then only the population with closest rate to 
m21,opt exists. 

If  m12 and m12’ are on opposite sides of m21,opt , then there is coexistence. 



The results can be extended to a limited extend to N-patch systems 



For a set of patches i = 1,N, the relevant equations for 
the tritrophic case can be written as 



It seems very difficult to get solutions for the resident and invader, 
but a unique solution with the invader absent can be obtained. 

An optimal movement rate can be obtained, but only under the 
assumption that all rates, when obtained, are positive. 



From the above it seems there are a lot of open 
questions. 

It should be again noted that we have made 
several assumptions 
 

•It is assumed there is movement from at least one patch, 
which occurs from an ‘upstream’ patch. 
 
•Populations are self-sustaining on every patch 
 
•The different species or genotypes are identical in all 
respects accept in their return rates to the first patch. 
 



The above is only a small part of theory involving traveling with 
loss.  Much work relaxes the assumption of perfect knowledge. 



Conclusion 
                                                                              
…………….. 


