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Structured integrodifference equation

n(x, t + 1) =

∫ ∞
−∞

(
Kt(x− y) ◦ Bt[n(y, t)]

)
n(y, t) dy,

and its linearization

n(x, t + 1) =

∫ ∞
−∞

(
Kt(x− y) ◦ At

)
n(y, t) dy.



Invasion speed

c∗ = min
s>0

(
1
s

log ρ(s)
)

where ρ(s) is a growth-rate, based on both demographic and
dispersal information.

H(s) = A ◦M(s)



Invasion speed: constant environments

Neubert and Caswell 2000

Moment-generating matrix M(s) :

mij(s) =

∫ ∞
−∞

kij(x)esx dx

Define:

A = B(0)

H(s) = A ◦M(s)

ρ(s) = largest eigenvalue of H(s)

Invasion speed:

c∗ = min
s

{
1
s

ln ρ(s)
}
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Sensitivity analysis: general

Let
θ = parameter vector

Sensitivity of c∗
dc∗

dθT
=

1
s∗

d log ρ
dθT

.

Elasticity of c∗
εc∗

εθT
=

(
1
c∗

)
dc∗

dθT
D(θ)

where D(θ) is a matrix with θ on the diagonal



Sensitivity analysis: constant environment

ρ(s∗) = max eigH(s∗)

Let w and v be the right and left eigenvectors of H(s∗)

d log ρ
dθT

=
1
ρ

(wT ⊗ vT)
dvec H(s∗)

dθT

dvec H(s∗)
dθT

= D(vec A)
dvec M(s∗)

dθT
+D(vec M(s∗))

dvec A
dθT

.



Sensitivity analysis: periodic environment

c∗ = min
s

(
1
s

log ρper(s)
)

ρper = max eig (Hp · · ·H1)

d log ρper

dθT
=

(
wT ⊗ vT

ρper

) p∑
i=1

∂vec H
∂vec THi

dvec Hi

dθT

∣∣∣∣
θ=θi

,

with

∂vec H
∂vec THi

=


I⊗ (Hp · · ·H2) i = 1
(Hi−1 · · ·H1)T ⊗ (Hp · · ·Hi+1) 1 < i < p
(Hp−1 · · ·H1)T ⊗ I i = p



Sensitivity analysis: stochastic environment

log ρstoch = lim
T→∞

1
T

log ‖HT−1(s) · · ·H0(s)w‖

Tuljapurkar’s formula

d log ρstoch

dθT
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1
T

T−1∑
i=0

[wT(i)⊗ vT(i + 1)]

RivT(i + 1)w(i + 1)

dvec Hi

dθT
(1)



Retrospective perturbation analysis
Goal: to decompose differences among “treatments” into
contributions from effects on each of the parameters defining
the problem.

Treatment i

Treatment i

Vital rates  (i)

Environmental

dynamics P(i)

Growth rate !

Vital rate response

" = { 1, ...  #}

Growth rate log !s

(a)

(b)
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SENSITIVITY ANALYSIS OF THE STOCHASTIC GROWTH RATE:
THREE EXTENSIONS†

Hal Caswell1

Woods Hole Oceanographic Institution, Massachusetts

Summary

The perturbation analysis of population growth rate plays an important role in population
biology. The sensitivity and/or elasticity (proportional sensitivity) of population growth
rate to changes in the vital rates are regularly used (i) to predict the effects of environ-
mental perturbations, (ii) to characterize selection gradients on life-history traits, (iii) to
evaluate management tactics, (iv) to analyse life table response experiments, and (v) to
calculate the sampling variance in population growth rate. In a stochastic environment,
population growth is described by the stochastic growth rate, which gives, with probabil-
ity 1, the asymptotic time-averaged growth rate of any realization. Tuljapurkar derived
the sensitivity and elasticity of the stochastic growth rate to changes in the entries of the
stochastic matrices. This paper extends his result to cover three cases, each of which has
arisen recently in applications. The first gives the response of the stochastic growth rate
to environment-specific perturbations, applied only in a specified subset of the possible
environments. The second gives the sensitivity and elasticity of the stochastic growth rate
to changes in lower-level parameters. The third applies to stochastic seasonal models, in
which the projection matrix for each year is a periodic product of matrices describing sea-
sonal transitions. In this case interest focuses on the sensitivity of the stochastic growth
rate to changes in the entries of the seasonal matrices, not entries in the annual matrices.
The paper describes examples of problems where each of these extensions is needed, and
the algorithms for each of the new calculations.

Key words: elasticity; matrix population models; population growth rate; seasonal models; sensi-
tivity; stochastic environments; periodic matrix models.

1. Introduction

The perturbation analysis (sensitivity and elasticity) of the population growth rate λ has
become an important and fundamental part of demographic analysis (e.g. Caswell, 2000, 2001
Chapters 9–11; de Kroon, van Groenendael & Ehrlén, 2000). The results are used to predict
the effects of environmental perturbations, to characterize selection gradients on life history
traits, to evaluate possible management tactics for conservation or pest control, to interpret life
table response experiments, to calculate sampling variance in λ from the sampling variances
in the vital rates, and to design sampling programs.
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Abstract Invasion speeds can be calculated from ma-
trix integrodifference equation models that incorporate
stage-specific demography and dispersal. These models
also permit the calculation of the sensitivity and elas-
ticity of invasion speed to changes in demographic
and dispersal parameters. Such calculations have been
used to understand the factors determining invasion
speed and to explore possible tactics to manage invasive
species. In this paper, we extend these calculations to
temporally varying environments. We present formulas
for the invasion speed and its sensitivity and elasticity
in both periodic and stochastic environments. Periodic
models can describe seasonal variation within a year,
or can be used to study the frequency of occurrence of
events (e.g., floods, fires) on interannual time scales.
Stochastic models can incorporate variances, covari-
ances, and temporal autocorrelation of parameters.
We show that the invasion speed is calculated from a
growth rate which is in turn calculated from a periodic
or stochastic product of moment-generating function
matrices. We present a new formulation of sensitivity
analysis, using matrix calculus, that applies equally to
constant, periodic, and stochastic environments.
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Introduction

When a population is introduced into a region where it
is initially absent, it may spread across the landscape
with a characteristic speed. In the idealized case of
a homogenous, time-invariant, and infinite landscape,
the invasion proceeds as a wave of fixed shape moving
at a constant speed (given some assumptions described
below). The speed of this invasion wave depends on
both demography (i.e., on the rates of survival, devel-
opment, reproduction, etc.) and on dispersal (i.e., on
the probability distribution of distances dispersed by
individuals at each stage of their life cycle), and can be
calculated from an integrodifference equation model.
Because the invasion speed, c∗, integrates demography
and dispersal into a single index of population spread, it
plays a role analogous to that played by the population
growth rate (λ or r = log λ) in demographic analysis
(Neubert and Caswell 2000). Sensitivity and elasticity
analyses of c∗ provide insight into how demographic
and dispersal parameters influence invasion speed, and
permit LTRE decomposition of observed differences in
invasion speed into contributions from both kinds of
parameters (Caswell et al. 2003).

Environments fluctuate, but such fluctuations do not
appear in these idealized calculations. In this paper, we
derive the invasion speed, and its sensitivity and elas-
ticity, from models for periodically and stochastically
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ADVANCES IN PLANT DEMOGRAPHY USING MATRIX MODELS

Life table response experiment analysis of the
stochastic growth rate

Hal Caswell*
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Summary

1. Life table response experiment (LTRE) analyses decompose treatment effects on a dependent
variable (usually, but not necessarily, population growth rate) into contributions from differences

in the parameters that determine that variable.
2. Fixed, random and regression LTRE designs have been applied to plant populations in many
contexts. These designs all make use of the derivative of the dependent variable with respect to the

parameters, and describe differences as sums of linear approximations.
3.Here, I extend LTRE methods to analyse treatment effects on the stochastic growth rate log ks.
The problem is challenging because a stochasticmodel contains two layers of dynamics: the stochas-
tic dynamics of the environment and the response of the vital rates to the state of the environment. I

consider the widely used case where the environment is described by aMarkov chain.
4. As the parameters describing the environmental Markov chain do not appear explicitly in the

calculation of log ks, derivatives cannot be calculated. The solution presented here combines deriv-
atives for the vital rates with an alternative (and older) approach, due toKitagawa andKeyfitz, that
calculates contributions in a way analogous to the calculation ofmain effects in statistical models.

5. The resulting LTRE analysis decomposes log ks into contributions from differences in: (i) the
stationary distribution of environmental states, (ii) the autocorrelation pattern of the environment,

and (iii) the stage-specific vital rate responses within each environmental state.
6.As an example, the methods are applied to a stage-classified model of the prairie plantLomatium

bradshawii in a stochastic fire environment.
7. Synthesis. The stochastic growth rate is an important parameter describing the effects of

environmental fluctuations on population viability. Like any growth rate, it responds to differences
in environmental factors. Without a decomposition analysis there is no way to attribute differences

in the stochastic growth rate to particular parts of the life cycle or particular aspects of the stochastic
environment. The methods presented here provide such an analysis, extending the LTRE analyses
already available for deterministic environments.

Key-words: autocorrelation, fire, Lomatium bradshawii, LTRE analysis, Markovian environ-

ments, matrix population models, sensitivity analysis, stochastic growth rate, stochastic
models

Introduction

A life table response experiment (or LTRE; the term was

introduced by Caswell 1989) is a study that compares a

complete set of vital rates under two or more conditions.

What counts as a complete set of vital rates depends on

the situation; it might be a life table, a population projec-

tion matrix or a set of parameters (survival, growth, repro-

duction, etc.) from which a projection matrix may be

calculated. The conditions among which the populations

are compared will be called ‘treatments’ here, although

they may be experimental manipulations or comparative

observations. In analogy with genuine experiments, LTRE

analyses have been classified into fixed (Caswell 1989),

random (Brault & Caswell 1993; Horvitz, Schemske &

Caswell 1997) and regression (Caswell 1996a; Knight,*Correspondence address. E-mail: hcaswell@whoi.edu

Journal of Ecology 2010, 98, 324–333 doi: 10.1111/j.1365-2745.2009.01627.x

! 2010 The Author. Journal compilation ! 2010 British Ecological Society



Determinants of invasion speed

• environmental states 1, . . . , k
• environmental state dynamics

P = Pr (u(t + 1) = i|u(t) = j)

• demographic responses

A1, . . . ,Ak

• dispersal responses

α1, . . . , αk



Decomposing differences

treatment 1 :

P(1)

A(1)
1 , . . . ,A(1)

k

α
(1)
1 , . . . , α

(1)
k

 −→ c∗(1)

treatment 2 :

P(2)

A(2)
1 , . . . ,A(2)

k

α
(2)
1 , . . . , α

(2)
k

 −→ c∗(2)



LTRE: the basic idea

y1 = y (θ1)

y2 = y (θ2)

Then
y2 − y1 ≈

dy
dθT

(θ2 − θ1)

Contributions:

C(θ) =

(
dy

dθT

)T

◦ (θ2 − θ1)



Environment-specific sensitivity

Indicator variable

Jt(h) =

{
1 u(t) = h
0 otherwise

dc∗

dθT

∣∣∣∣
u=h

=
1
s∗

d log ρstoch

dθT

∣∣∣∣
u=h

=
1
s∗

1
T

T−1∑
i=0

Ji(h) [wT(i)⊗ vT(i + 1)]

RivT(i + 1)w(i + 1)

dvec Hi

dθT



Environment-specific sensitivities

Use this to get

dc∗

dvec TA

∣∣∣∣
u=h

and
dc∗

dαT

∣∣∣∣
u=h

for h = 1, . . . , k.

But what about contributions from the environment (P)?



Kitagawa-Keyfitz demcomposition

Suppose

c∗(1) = c∗[a, b]

c∗(2) = c∗[A,B].

Then

C(A− a) = (1/2) (c∗[A,B]− c∗[a,B])

+(1/2) (c∗[A, b]− c∗[a, b])

C(B− b) = (1/2) (c∗[A,B]− c∗[A, b])

+(1/2) (c∗[a,B]− c∗[a, b]) .



Decomposition of effect of environmental dynamics

Let Θ be the combination of demographic and dispersal
parameters.

Kitigawa-Keyfitz decomposition

C(P) = 0.5
(

c∗
[
P(2),Θ(1)

]
− c∗

[
P(1),Θ(1)

]
+
[
P(2),Θ(2)

]
− c∗

[
P(1),Θ(2)

])
Decompose into contributions from the frequency differences
and the effects of autocorrelation

C(P) = C(Q) + C(R)



Lomatium bradshawii

Caswell, H. and T. Kaye. Stochastic demography and
conservation of Lomatium bradshawii in a dynamic fire regime.
Advances in Ecological Research 32:1-51



Environment

1 2

(a) (b)

B U

1–p

1–p
3

1–q

q q q

4
1–q

1–q 1–q

q
p p



Demography



Dispersal



A made-up example
Demography

A1, . . . ,A4 = Fisher Butte with extra fertility
A1, . . . ,A4 = Rose Prairie

Dispersal

α(1) =
(

2 1 .4 .2
)

α(2) =
(

1 .5 .2 .1
)

Environment
frequency 0.5 0.7
autocorrelation −0.3 0

Invasion speed

c∗(1) = 0.57 c∗(2) = 0.18 ∆c∗ = −0.4



Contributions

c∗(2) − c∗(1) = −0.4

Q R A_1 A_2 A_3 A_4 a1 a2 a3 a4
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

C
o
n
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u
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o
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Step by step

1. Decompose environmental differences using the
Kitagawa-Keyfitz decomposition.

2. Compute contributions of the aggregate demography and
dispersal differences using Kitagawa-Keyfitz.

3. Use environment-specific derivatives of c∗ to get
contributions from each demographic parameter and each
dispersal parameter in each environment.



Data requirements

In each environmental state, under two or more “treatments”,
need data on:

1. Markovian environmental dynamics
2. stage-structured demography
3. stage-specific dispersal kernels



Thank you!


