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Overview
• Caveats and Apologies

• The Nature of Numerical Relativity

• ADM / 3+1 Formalism

• Initial Value Problem

• New Formalisms for Evolving Einstein’s Equations

• Coordinate Conditions

• Black Hole Excision and Apparent Horizon Location

• Black Hole Evolutions

• Neutron Star Evolutions

• Stable Finite Difference Methods & Adaptive Mesh Refinement Techniques

• Conclusions & Open Issues
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Caveats & Apologies

• Will focus on “main stream”
numerical relativity, which itself is
primarily concerned with the
prediction of gravitational
waveforms from interactions and
collisions of compact objects
(black holes (BH) and neutron
stars (NS))

• In particular, will not discuss

• Cosmological solutions (e.g. approaches to the singularity)

• Nature of black hole interiors, black hole singularities

• Numerical relativity in higher dimensions (e.g. black strings)

• Critical phenomena (except briefly in context of adaptive techniques)
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Caveats & Apologies
• Will restrict attention to “space + time” (a.k.a. 3+1/ADM) approach to

numerical relativity

• Will not discuss

• Characteristic (null) approaches

• Approaches based on conformal Einstein equations (Friedrich 1981)

• Will largely restrict attention to finite-difference approaches to the
discretization of the field equations

• This excludes

• Spectral methods (but see talks by Lindblom and Pfeiffer)

• Finite element methods (which have been used with considerable success,
particularly for the determination of initial data, by Doug Arnold and
collaborators)

• Will also thus not discuss relative merits of the various approaches to
discretization, but note that at least some pursuing spectral techniques are
confident that we’ll all be in their camp eventually!
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Caveats & Apologies
• Will only briefly discuss initial value problem (see talk by Pfeiffer)

• Will not discuss issues related to hyperbolicity/well-posedness of various
formulations of Einstein’s equations (see talk by Reula)

• Will not discuss the problem of imposing boundary conditions on a finite
computational domain; i.e. solving the initial/boundary value problem for
Einstein’s equations. (see talk by Sarbach)

• Needless to say, these are all very important issues in numerical relativity, and
the subject of much current research!
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The Nature of Numerical Relativity
• As with many other areas of computational science, basic job is the solution of

a system of non-linear, time-dependent, partial differential equations using
numerical methods

• Field Equations
Gµν = 8πTµν

are generally covariant, giving rise to separation of equations into those of
evolution type, plus constraints

• Determination of initial data is already highly non-trivial due to the constraints,
particularly to set “astrophysically realistic” conditions

• Tensorial nature of field equations, plus constraints, plus coordinate freedom
invites development of multitude of “formalisms”:

• Specific choice of dynamical variables (i.e. those quantities that will be
advanced in time via evolution equations)

• Specific form of field equations (e.g. multiples of constraints can be added
to evolution equations)

• Specific choices of coordinates, or classes of coordinate systems
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The Nature of Numerical Relativity
• Mathematical (as well as empirical evidence) shows that choice of formalism

can have significant impact on continuum well-posedness, as well as ability to
compute a convergent numerical solution

• STABILITY IS THE KEY ISSUE both at the continuum and numerical level

• Continuum: Well-posedness is always tied to some notion of stability

• Discrete: Lax equivalence theorem (or variations thereof) suggest that
stability and convergence are equivalent given consistency

• Constraints/coordinate freedom lead to many options in how discrete solution
is advanced from one time step to the next (Piran 1980)

• Free evolution: Constraints are solved at initial time, but then all dynamical
variables are advanced using evolution equations

• Partially constrained evolution: Some or all of the constraints are re-solved
at each time step for specific dynamical variables, in lieu of use of the
corresponding evolution equation

• Fully constrained evolution: All of the constraints are re-solved at each time
step, and all four degrees of coordinate freedom are used to eliminate
dynamical variables, leaving precisely two dynamical degrees of freedom to
be advanced using evolution equations
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The Nature of Numerical Relativity
• 3D work (i.e. computations in three space dimensions plus time) has been

biased to free evolution schemes

• Elliptic PDEs are considered expensive to solve

• Better formal understanding of treatment of boundaries for equations of
evolutionary type, particularly for strongly hyperbolic systems

• Theory is generally in better shape for hyperbolic systems than for mixed
hyperbolic/elliptic

• At the same time, empirical evidence from 1-, 2-, and even some recent 3D
calculations indicate that constrained schemes provide more facile route to
stability

• Substantial evidence that at least some free evolution schemes admit
non-physical modes (e.g. modes that violate the constraints), and that these
tend to grow exponentially (see talk by Lindblom); boundary conditions further
complicate matters

• Expect constrained versus free evolution to be intensively studied in near future
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The Nature of Numerical Relativity
• Coupling to matter: Introduces all of the complications associated with the

numerical treatment of matter field(s)

• Solution properties

• Don’t expect shocks in vacuum (as long as evolution system remains linearly
degenerate)

• Do expect singularities, and must be avoided in numerical work, unless one is
interested in probing singularity structure

• Large dynamic range in many problems of interest; for example in binary
black hole collisions, must resolve dynamics on the scale of the BH horizon,
as well as many wavelengths of characteristic gravitational radiation

• Gravitational waves tend to be a relatively small effect, but must be
computed precisely for maximal use in the context of terrestrial detection of
gravitational radiation
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ADM / 3+1 Formalism
(York 1979)

• Manifold with metric (M, gµν) foliated by spacelike hypersurfaces Σt

• Coordinates xµ = (t, xi)

• Future directed, timelike unit normal

nν = −α∇µt

where α is the lapse function

• Shift vector βµ defined via
tµ = αnµ + βµ

βµnµ = 0
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ADM / 3+1 Formalism

• Hypersurface metric γµν induced by gµν

γµν = gµν + nµnν

• Mixed form of γµν projects into hypersurface

⊥µ
ν = δµ

ν + nµnν

• Metric compatible covariant derivative in slices

Dµ ≡⊥ν
µ∇ν

Dµγαβ = 0
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ADM / 3+1 Formalism

• 3+1 line element

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)

• Extrinsic curvature (second fundamental form)

Kij = −1
2
Lnγij

• 3+1 form of Einstein’s equations Gµν = 8πTµν derived by considering various
projections of Einstein/Ricci and stress-energy tensors

• Projections of Tµν

ρ ≡ nµnνTµν

jµ ≡ − ⊥α
µnβTαβ

Sµν ≡ ⊥α
µ ⊥β

νTαβ
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ADM / 3+1 Formalism

• Constraint Equations: From G0i = 8πT0i, which do not contain 2nd time
derivatives of the γij

• Hamiltonian Constraint

R + K2 − KijK
ij = 16πρ (1)

where R is the 3-dim. Ricci scalar, and K ≡ Ki
i is the mean extrinsic

curvature.

• Momentum Constraint
DiK

ij − DjK = 8πji (2)
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ADM / 3+1 Formalism
• Evolution Equations: From definition of extrinsic curvature, Gij = 8πTij, and

Ricci’s equation.

Ltγij = Lβγij − 2αKij (3)

LtKij = LβKij − DiDjα + α
(
Rij + KKij − 2KikK

k
j

) −
8πα(Sij − 1

2
γij(S − ρ)) (4)

• Cauchy Problem for Einstein’s Equations (vacuum): Prescribe {γij,Kij} at
t = 0 subject to (1-2), specify coordinates via choice of α and βi, evolve to
future (or past) using (3-4)

• Bianchi identities (coordinate invariance) guarantee that if constraints are
satisfied at t = 0, will be satisfied at subsequent times; i.e. evolution equations
preserve constraints

• Extent to which this is the case in numerical calculations has been a perennial
issue in numerical relativity

14

Initial Value Problem
(Lichnerowicz 1944, York 1979, Cook 2000, Pfeiffer 2003)

• Key question: Which of the 12 {γij,Kij} do we specify freely at the initial
time, and which do we determine from the constraints?

• York-Lichnerowicz approach: Specify dynamical variables only up to overall
conformal scalings, and perform decomposition of extrinsic curvature into trace,
longitudinal, and transverse pieces.

• Introduce base/background metric, γ̃ij, conformal factor ψ

γij = ψ4γ̃ij

• Decompose Kij into trace/trace-free (TF) parts

Kij = Aij +
1
3
γijK

γijAij = 0
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Initial Value Problem
• Define

Aij = ψ−10Ãij

(motivated by DjA
ij = ψ−10D̃jÃ

ij)

• Split Ãij into longitudinal/transverse pieces

Ãij = Ãij
TT + Ãij

L

D̃jÃ
ij = 0

Ãij
L = 2D̃(iW j) − 2

3
γ̃ijD̃kW

k ≡ (	̃W )ij

W i is a vector potential.

• Consider divergence of Ãij

D̃jÃ
ij = D̃j(	̃W )ij ≡ (∆̃�W )i

∆̃� ≡ vector Laplacian

16

Initial Value Problem
• In practice, is more convenient to give freely specifiable part of Ãij as a

symmetric trace free (STF) tensor itself; “reverse decompose” Ãij
TT as

Ãij
TT = T̃ ij − (	̃V )ij

where T̃ ij is STF and V i is another vector potential.

• Define Xi ≡ W i − V i, then

Ãij = T̃ ij + (	̃X)ij

• Constraints become

∆̃ψ =
1
8
R̃ψ +

1
12

K2ψ5 − 1
8
ÃijÃ

ijψ−7 − 2πψ5ρ

(∆̃�X)i = −D̃jT̃
ij +

2
3
ψ6D̃iK + 8πψ10ji

which are 4 quasi-linear, coupled elliptic PDEs for the 4 “gravitational
potentials” {ψ, Xi}
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Initial Value Problem
• Common simplifying assumptions:

• Conformal flatness: γij = fij, with fij the flat 3-metric

• Maximal slice: K = 0
• “Minimal radiation”: T̃ ij = 0

• Constraints become

∆̃ψ = −1
8
ÃijÃ

ijψ−7 − 2πψ5ρ = −1
8
(	̃X)ij(	̃X)ij − 2πψ5ρ

(∆̃�X)i = 8πψ10ji

• Note decoupling and linearity of momentum constraint.
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 2003)

• Consider vacuum constraints with previously mentioned simplifying assumptions

∆̃ψ +
1
8
(	̃X)ij(	̃X)ij = 0

(∆̃�X)i = 0

where ∆̃, 	̃ and ∆̃� are flat-space operators

• The momentum constraints can be solved analytically (Bowen & York 1980) to
produce data corresponding to black holes with specified linear and angular
momentum

• These solutions can then be superimposed to generate solutions of momentum
constraints representing multiple holes

• Hamiltonian constraint must then be solved numerically, and one must deal
with singular behaviour of ψ as r → 0
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 2003)

• Traditional approach introduced inner boundaries at ri = ai around each hole
with ri measured from hole center, then imposed mixed (Robin) conditions to
guarantee that final solution did describe one or more black holes (i.e. that the
solution contained apparent horizons)

• In context of finite difference methods, inner boundaries proved troublesome,
particularly in 3D case in cartesian coordinates (not so much of a problem for
finite element, spectral approaches)

• Key idea of puncture approach: “Factor out” singular behaviour of ψ via
following ansatz for N black holes:

ψ =
1
α

+ u =
N∑

i=1

M

2|
r − 
ri| + u

where the 
ri are the locations of the punctures, and 1 + 1/α is the
Brill-Lindquist conformal factor
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 2003)

• Hamiltonian constraint becomes

∆̃u +
1
8
αt(	̃X)ij(	̃X)ij(1 + αu)−7 = 0

with boundary condition

lim
R→∞

u = 1 + O(R−1)

• Authors showed that by solving this equation everywhere on R3 (i.e. without
any points excised), data that is asymptotically flat near punctures is generated,
but more importantly, data do represent time instants of black hole spacetimes

• Technique has become very popular over the past few years, primarily due to its
ease of implementation in 3D Cartesian coordinates
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BSSN Formalism
(Shibata & Nakamura 1995, Baumgarte & Shapiro 1998)

• Key ideas: Eliminate mixed second derivatives in Rij via introduction of
auxiliary vbls; evolve conformal factor, K separately in spirit of “spin
decomposition” of geometric quantities

• Conformal metric
γ̃ij = ψ4γij = e−4φγij

φ =
1
12

ln γ so that γ̃ = 1

• TF part of extrinsic curvature (note different scaling relative to initial data
approach)

Ãij = e−4φAij

Ãij = γ̃imγ̃jmÃij = e4φAij

• Conformal connection functions

Γ̃i ≡ γ̃jkΓ̃i
jk = −∂jγ̃

ij
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BSSN Formalism
• Get set of evolution equations

∂tφ =
1
6
αK + βi∂iφ +

1
6
∂iβ

i

∂tK = −γijDjDiα + α(ÃijÃ
ij +

1
3
K2) + 4πα(ρ + S) + βi∂iK

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k

∂tÃij = e−4φ((−DiDjα)TF + α(RTF
ij − 8πSTF

ij )) + α(KÃij − 2ÃilÃ
l
j) +

βk∂kÃij + 2Ãk(i∂j)β
k − 2

3
Ãij∂kβ

k

∂tΓ̃i = −2Ãij∂jα + 2α(Γ̃i
jkÃ

kj − 2
3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ)

βj∂jΓ̃i − Γ̃j∂jβ
i +

2
3
Γ̃i∂jβ

j +
1
3
γ̃mi∂m∂jβ

j + γ̃mj∂m∂jβ
i

• Crucially, momentum constraint is used to eliminate ∂jÃ
ij in the derivation of

∂tΓ̃i
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BSSN Formalism
Comparison with Standard ADM

• Evolution of the extrinsic
curvature component Kzz at
the origin using harmonic
slicing and βi = 0. Solid line
computed using the BSSN
equations, dotted lines with
standard ADM. (Source:
Baumgarte & Shapiro 1998)

• As a result of this work, the
BSSN approach was rapidly
and widely adopted in 3D
numerical relativity

• Additional modifications
leading to better numerical
performance have also been
introduced, some will be
mentioned below
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KST Formalism
(Kidder, Scheel & Teukolsky 2001)

• Performed systematic investigation of impact of constraint addition, definition
of dynamical variables on hyperbolicity of field equations and efficacy for
numerical calculations

• Constraints:

C ≡ 1
2
(R − KijK

ij + K2) − 8πρ = 0

Ci ≡ DjK
j
i − DiK − 8πji = 0

• Auxiliary variables:
dkij ≡ ∂kγij

• Additional constraints:

Ckij ≡ dkij − ∂kγij = 0

Cklij ≡ ∂[kdl]ij = 0 ⇒ ∂k∂lγij = ∂(kdl)ij
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KST Formalism
• Evolution equations:

∂̂0γij ≡ −2αKij

∂̂0dkij ≡ −2α∂kKij − 2Kij∂kα

∂̂0Kij ≡ F [ ∂adbcd, ∂a∂bα, ∂aα, · · ·]

where ∂̂0 ≡ ∂t − Lβ

• Introduce densitized lapse, Q

Q ≡ ln(αγ−σ)

where σ is the densitization parameter, Q, βi considered arbitrary gauge
functions independent of the dynamical vbls.
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KST Formalism
• System 1: Add constraints via 4 parameters {γ, ζ, η, χ}

• New evolution system: (γ here not to be confused with det γij)

∂̂0Kij = (· · ·) + γαγijC + ζαγmnCm(ij)n

∂̂0dkij = (· · ·) + ηαγk(iCj) + χαγijCk

• Hyperbolicity analysis: Compute characteristic speeds, eigenvectors of principal
part of evolution system as function of {σ, γ, ζ, η, χ}

• Find two cases yielding strong hyperbolicity; in both instances must have
σ = 1/2; one case has two free parameters, other has one

• Show that constraints evolve as per the evolution equations; same characteristic
speeds; constraint evolution is strongly hyperbolic when evolution scheme is
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KST Formalism
• System 2: Start with System 1, but redefine dynamical variables Kij, dkij

using 7 additional parameters {â, b̂, ĉ, d̂, ê, k̂, ẑ}

• Generalized extrinsic curvature: Pij

Pij = Kij + ẑγijK

• Generalized metric derivative: Mkij

Mkij = Mkij[ , dkij, γmndkmn, γmndmnk, γij, {â, b̂, ĉ, d̂, ê, k̂, ẑ}]

• Redefinitions do not change:

• Eigenvalues of evolution system

• Strong hyperbolicity of system

• Redefinitions do change:

• Eigenvectors, characteristic fields

• Nonlinear terms in non-principal parts of evolution systems
28

KST Formalism
• Recover several previously studied systems (Fritelli & Reula 1996,

Einstein-Christoffel (Anderson & York 1999)) with appropriate choices of the
12 parameters.

• System 3: Sub-case of System 2; generalized Einstein-Christoffel system with
free parameters {η, ẑ}

• Study numerical evolution of Schwarzschild hole using spectral method and
Painlevé-Gullstrand coordinates (fixed gauge) on domain from inside horizon to
some Rmax

• Search parameter space for particularly long lived evolutions

• Find evidence for exponentially growing “constraint violating” mode, that
appears not to be due to the numerics.

• Some dependence of longevity of runs on Rmax, but only up to a point
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KST Formalism
Illustration of Constraint Violating Instability

• Momentum constraint CX vs
time for evolutions of a
Painlevé-Gullstrand slicing of
a Schwarzschild black hole
using the Generalized
Einstein-Christoffel system
with η = 4/33 and ẑ = −1/4
Angular and temporal
resolutions are fixed, and the
various lines show several
radial resolutions. Outer
boundary is at 11.9M ; if it is
moved out to 40M run time
extends to ∼ 1300M for the
same accuracy. (Source:
Kidder, Scheel & Teukolsky
2001)
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Coordinate Conditions
HOW DO WE DEFINE/DETERMINE GOOD COORDINATE

SYSTEMS/CONDITIONS FOR USE IN NUMERICAL RELATIVITY?

• Desirable features: (not exhaustive, some may not be consistent with others)

• Cover region(s) of spacetime of interest

• Avoids physical singularities

• Remain singular/non-pathological

• Simplify equations of motion
• Eliminate variables from update scheme
• Cast equations into particularly nice form (e.g. harmonic coordinates)

• Simplify physics
• Traditional use of coord. freedom, e.g. spherical coords. for spherical

problems
• Co-rotating coords for binary inspiral, absorb bulk dynamics into coord.

system, more dynamic range available for secular dynamics
• Symmetry seeking coordinates (Garfinkle & Gundlach 1999)
• Known asymptotic states (e.g. Kerr BH) have unique/recognizable

representation
• Maintains linearity between “dynamical vbls.” and “physical vbls.”
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Coordinate Conditions
• Desirable features:

• Computationally efficient (elliptic conditions are generally avoided)

• Compatible with hyperbolicity, well-posedness (STABILITY!)

• Facilitates well posed-discrete problem (STABILITY!)

• Compatible with excision techniques

• IMPORTANT NOTE: When things get sufficiently non-linear/time-dependent,
coordinate choices will only go so far in optimizing calculation; physics of
situation, which varies from scenario to scenario, and which is not known a
priori dictates, e.g., what discretization scale is necessary
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Coordinate Conditions: Traditional Choices
• Geodesic (Gaussian-normal) Coordinates:

α = 1 βi = 0

See e.g. May and White 1966. Singularity seeking, but may have some utility
in context of excision techniques. Provide substantial simplification of 3+1
equations.

• Normal Coordinates:
βi = 0

Historically has been widely used, particularly in initial phases of code
development due to simplification of evolution equations—many early codes
had difficulty with “shift”/“advective” terms.
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Coordinate Conditions: Traditional Choices
• Maximal Slicing:

K = 0 ⇒ DiD
iα = α(KijK

ij + 4π(ρ + S))

Estabrook et al 1973. Volume of hypersurfaces maximized with respect to
continuous deformations within spacetime. Widely used due to singularity
avoidance, compatibility with York IVP approach, simplifying property

Need to solve elliptic equation at every time step—often considered
computationally too expensive

34

Harmonic Coordinates
• Coordinate functions xµ are harmonic

∇α∇αxµ = 0

• In 3+1 context yield following for lapse and shift

(∂t − βj∂j)α = −α2K

(∂t − βj∂j)βi = −α2
(
γij∂j lnα + γjkΓi

jk

)

• Appeal is that field equations reduce to non-linear wave equations, widely used
in early hyperbolic formulations (e.g. Choquet-Bruhat 1952)

• Used in 3D by Landry & Teukolsky 2000 in preliminary study of neutron star
coalescence
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Harmonic Coordinates
• Also used in 3D by Garfinkle 2002 to study generic singularity formation in

spacetimes with topology T 3 × R with scalar field matter source.

• Harmonic slicing (or variants) has also been used in several other 3D
computations over the past few years, as will be discussed below

• Disadvantages:

• Harmonic slices may tend to be singularity seeking instead of singularity
avoiding

• Harmonic coordinates may be susceptible to coordinate singularities
(coordinate shocks, Alcubierre 1997)
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Generalized Harmonic Coordinates
• Introduce specified source functions, Hµ

∇α∇αxµ = Hµ

Hµ to be chosen, for example, to stave off coordinate singularities

• Open question: What are good choices for the Hµ for scenarios of current
interest, such as binary inspiral?

• Implementation note: Harmonic coords. yield wave equations for gµν—can
discretize directly in second order form (Pretorius in progress) without need for
auxiliary vbls.

• Leads to economical storage requirements, particularly relative to many of the
first-order hyperbolic approaches used in conjunction with finite-differencing.
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Bona-Masso Slicings
(Bona et al 1995)

• Considered slicing conditions invariant under xi → x̃i on each
hypersurface—condition must be expressed in terms of “slicing scalars” and
their proper time derivatives

• Restricting to first order scalars get

(∂t − βi∂i) lnα = −αf(α)K

with f(α) > 0

38

Bona-Masso Slicings
• f = 0: Geodesic slicing (with α = 1 initially)

• f = ∞: Maximal slicing

• f = 1: Harmonic slicing

• f = 2/α: “1 + log” slicing; for case βi = 0, can integrate slicing equation to
get

α = 1 + ln γ

• Empirically, “1 + log” slicing has singularity avoidance properties similar to
maximal and is inexpensive computationally

• Has been used extensively in 1D and 3D black hole work, as will be seen below
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Minimal Strain / Minimal Distortion
(Smarr & York 1978)

• Consider hypersurface “strain” and “distortion” tensors

Θij ≡ −1
2
αKij + Lβγij

Fij ≡ γ1/3Ln

(
γ−1/3γij

)

and extremize ∫
Σ

ΘijΘijdV∫
Σ

FijF
ijdV

w.r.t. βi

• In both instances, get system of elliptic equations for βi
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Minimal Strain / Minimal Distortion
• Minimal strain

DiD
iβj + DiD

jβi − 2Di(αKij) = 0

• Minimal distortion

DiD
iβj +

1
3
DjDiβ

i + Rj
iβ

i − 2Di(α(Kij − 1
3
K)) = 0

As name suggests, this choice tends to minimize distortion of spatial coords.
during an evolution, as well as the rate of change of metric vbls.

• Both have been used for 2D, 3D black hole and neutron star work, but
generally deemed too expensive computationally, complex to implement

• Provided motivation for conditions that approximated behaviour of those
choices, but which were more efficient
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Driver (Dynamical) Conditions
(Balakrishna et al 1996)

• Sought active enforcement of coordinate conditions, motivated by secular
“drifts” when conditions were “passively” enforced

• K driver:

∂tK + cL = 0 c > 0 ⇒ K → 0 exponentially

• Rewrite as

DiD
iα − KijK

ijα − βiDiK − 4π(S + ρ)α − cK ≡ L[α] = 0

• Convert elliptic PDE to parabolic one

∂tα = εL[α]

• For properly chosen ε and c (non-trivial problem), α “diffuses” to maximal
solution, and idea can be applied to other elliptics (e.g. minimal
distortion/strain)
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Driver Conditions
• Alcubierre & Brügmann 2001 constructed coordinate condition closely related

to minimal distortion based on conformal connection Γ̃i ≡ γjkΓ̃i
jk; instead of

Γ̃i = 0, impose
∂tΓ̃i = 0 Γ̃i(0, xi) = 0

• Yields complicated elliptic equation for βi, write schematically as

L[βi] = 0

• Then solve
∂tβ

i = εL[βi] ε > 0

• Alcubierre et al 2001a also tried hyperbolic version

∂2
t βi = Ψ−4ε1∂tΓ̃i − ε2∂tβ

i ε1, ε2 > 0

where Ψ is the time-independent Brill-Linquist conformal factor
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Black Hole Adapted Coordinates
• Kerr-Schild form of Kerr Metric

ds2 = (ηµν + 2Hlµlnuη) dxµdxν

ηµν = diag(−1, 1, 1, 1)

ηµνlµlν = gµνlµlnu = 0

H =
Mr

r2 + a2 cos2 θ

where a is the angular momentum parameter

• 3+1 form

α = (1 + 2H)−1/2

βi = 2Hli

γij = ηij + 2Hlilj

44

Black Hole Adapted Coordinates
• For a = 0 reduces to ingoing Eddington-Finkelstein coordinatization of

Schwarzschild.

• Dynamical variables well behaved across horizon

• Have been used extensively in recent years in studies of single black hole
evolutions, as well as in construction of 2-BH initial data and evolutions thereof
(Brandt et al 2000)

• Open question: Can this system be effectively generalized for use in generic BH
interactions?
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Black Hole Excision Techniques
(Unruh c1982)

• Motivation 1: Simulation of BH spacetimes need to avoid physical singularities

• Traditionally, coord. freedom was used for this purpose (e.g. maximal slicing),
but coordinate pathologies generally arose on a dynamical timescale

• Lead to violation of principle of simulation linearity (A. Brandt’s Golden Rule of
Numerical Analysis)

Cost of simulation ∝ Amount of physical process simulated

• Typically in BH calcs., dynamical vbls. and/or their gradients would grow
without bound, while “physical dynamics” was perfectly bounded.

• Resulted in disheartening and persistent era wherein exponential increase in
computer power yielded approximately linear increase in physical time for which
BH spacetimes could be simulated
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Black Hole Excision Techniques
• Motivation 2: BH simulations need to abide by the “Golden Rule” (eventually

at least!)

• Unruh’s first suggestion: Given that BH interiors are causally disconnected from
the exterior universe, excise insides of BHs from the computational domain
(was originally greeted with considerable scepticism in the NR community, but
has since transmuted into an “obvious” idea that verges on dogma)

• Unruh’s second suggestion: Since event horizons require knowledge of the
complete spacetime, use the apparent horizons as surfaces within which to
excise

• Idea was championed and explored by Thornburg in his graduate work, but first
successful implementation (in spherical symmetry) was due to Seidel & Suen
1992, and is now used extensively in 3D black hole work
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Excision: Mathematical/Computational
Considerations

• Free evolution schemes particularly those where α, βi are either freely specified
or satisfy evolution equations themselves have advantage

• Key idea is that equations of motion themselves are applied at excision
surface—i.e. no boundary conditions per se are required

• Hyperbolic formulations even more advantageous due to identification of
characteristics, and fact that all disturbances propagate along characteristics

• Especially natural for spectral methods, since evaluation of EOM (derivatives)
is independent of location within computational domain

• In principle, “No BC” approach should also work for finite difference codes, but
generally require modification of difference equations at/near excision surface

48

Excision: Mathematical/Computational
Considerations

• Constrained evolution: Excision has also been employed in this case, primarily
in 1D (spherical) and 2D (axisymmetric) situations

• ANIMATION Spherical example: Choptuik, Hirschmann & Marsa 1999.
Einstein Yang-Mills collapse—tuning to a “colored” black hole.

• ANIMATION Axisymmetric example: Pretorius 2002. Head-on collision of two
black holes, each generated via collapse of massless scalar field pulses.

• Inner (excision) boundary poses a problem for elliptics

• Dynamical vbls. Can use corresponding evolution equation at/near excision
surface.

• Gauge vbls. Not clear what can be done here, Pretorius’ work shows
inconsistency of constrained evolution w.r.t. evolution equations, once
trapped surfaces have been detected and excised.

• Open Question: Is is possible to devise appropriate BC’s for elliptic coordinate
conditions to generate consistent evolution?

• Driver conditions may provide one route.
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Finding Apparent Horizons / Marginally Trapped
Surfaces

• On any hypersurface, Σt, consider closed 2-surface, S with outward pointing
normal, sµ, sµsµ = 1. Then

kµ = sµ + nµ

is tangent field to outgoing null geodesics emanating from S

• Marginally trapped surface (MTS) has vanishing expansion, Θ

Θ = ∇µkµ = 0

• In 3+1 language, find (York 1979)

Θ = dis
i − K + sisjKij = 0 (5)
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Finding Apparent Horizons
• Adopting spherical coordinates on S, and some origin interior to S, consider

ϕ(r, θ, φ) = r − ρ(θ, φ) (6)

where r is the coordinate distance from the origin.

• MTS is then defined by the level surface ϕ = 0

• Substitution of (6) in (5) yields 2nd order elliptic equation for ϕ (in S) that can
be solved in a variety of ways

• Finite difference approach: (Huq et al 2002, Thornburg 2003); solve non-linear
elliptic equation for ϕ directly using finite difference approximation, global
Newton iteration, and sparse solver (such as incomplete LU-conjugate gradient)
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Finding Apparent Horizons
• Spectral methods: (Nakamura et al 1984/1985); expand ρ in spherical

harmonics

ρ(θ, φ) =
lmax∑
l=0

l∑
m=−l

almYlm(θ, φ)

and then use iterative algorithm to determine coefficients alm that solve MTS
equation.

• Variation (Libson et al 1994), convert root-finding to minimization of

∫
Θ(alm)2

• Curvature flow: (Tod 1991); convert elliptic problem to parabolic one by
deformation of trial surface S via

∂xi

∂τ
= −siΘ
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Finding Apparent Horizons
• Level flow: (Shoemaker et al 2000). Extends curvature flow by tracking

collection of level surfaces; can detect change in topology of apparent horizon.

• Many implementations of AH locators now, and some benchmarks, no clear
winners in terms of efficiency

• Also not clear how vital AH location is for excision strategies, may be able to
choose appropriately parametrized surfaces that are “suitably trapped” (e.g.
Pretorius 2002), and thus obviate need for AH detection at each time step (or
even every few time steps)

• Locators certainly continue to be useful for, e.g., detecting (approximately)
when black holes have formed in collapse computations
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Black Hole Evolutions
• 3D finite-difference codes universally adopt Cartesian coordinates even if

simulating single black hole (possibly with perturbations)

• Principal rationale is that singularities in curvilinear coordinate systems are very
difficult to deal with numerically (regularity issues), and is in fact one reason
that axisymmetric studies have been largely abandoned

• However, for generic scenarios, Cartesian coordinates make sense unless
multiple coordinate patches are to be used

• Current 3D codes typically use BSSN formalism or some some variant; i.e. are
free evolution codes

• STABILITY is still a key issue, although less so than it was a decade ago

• Codes largely use a single finite difference grid (unigrid codes), with a single
resolution ∆x = ∆y = ∆z = h, ∆t = λh (λ is known as the Courant number
and typically must be less that one for explicit schemes for stability)
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Black Hole Evolutions
• Unigrid design, coupled with computer resource limitations (often memory)

restrict computational domain to be quite small, or resolution of near-horizon
regions to be quite coarse

• Outer boundary conditions are still largely ad hoc; sometimes Dirichlet (perhaps
with “blending”), or some form of Sommerfeld (outgoing radiation conditions)

• Complexity of field equations means that there are literally thousands of
floating point operations to be performed per spatial grid point per time step;
combined with locality of finite difference operators, makes these codes ideal
candidates for parallelization

• Community has invested significant effort in parallelization infrastructure
(dating back to the time of the NSF-funded Binary Black Hole Grand
Challenge), and Cactus (www.cactuscode.org) in particular, has seen
widespread use

• Will summarize in the following most of the major recent and current efforts in
the 3D simulation of one or more black holes
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Single Black Hole
(Alcubierre & Brügmann 2001)

• Consider Schwarzschild hole in ingoing Eddington-Finkelstein (IEF) coordinates

• Modifications to BSSN

• Enforce tracelessness of Ãij at each time step

• Use independently evolved Γ̃i only in terms involving their derivatives,
otherwise recompute via Γ̃i ≡ γjkΓ̃i

jk

• Coordinate conditions

• Slicing: Needed “dynamical” condition for stability, used ∂tK = 0; solve
resulting elliptic equation for α at each time step, but keep K constant “by
hand”

• Shift: Experimented with several conditions including “Gamma driver”, but
also used analytic IEF value
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Single Black Hole
(Alcubierre & Brügmann 2001)

• Computational details

• Crank-Nicholson time differencing, solved (approximately) via iteration

• Upwind differencing for ∂iβ
i (advective) terms, centred otherwise

• Excise a cube within horizon

• For update on cube faces use RHSs of evolution equations computed from
neighboring grid points (O(∆x) extrapolation of RHSs)

• Used grids up to 1003, outer boundaries 10 − 40M , 5 to 20 grid points
across BH.

• Had to impose octant symmetry for stability

• Were able to evolve essentially forever in certain cases (discrete solutions
appeared to be asymptoting to stationary states)

• Calabrese et al 2003 point out that cube excision must be treated carefully; for
Schwarzschild, excised cube must have edge length < 4

√
3M/9 or some

characteristic directions will be pointing out of the cube.
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Single Black Hole
(Alcubierre et al 2001a)

• Approach follows Alcubierre & Brügmann 2001, but focus is on evolution of
single black holes distorted with Brill wave

• Initial data
ds2 = Ψ4

(
e2q

(
dη2 + dθ2

)
+ sin2 θdφ2

)
where η ∼ ln(r), and q is the adjustable “Brill wave function”

• Coordinate conditions:
∂tα = −2α(K − K0)

where K0 is the initial mean extrinsic curvature

∂2
t βi =

0.75
Ψ4

Γ̃i − 3
M

∂tβ
i

• Choose q to produce highly distorted BH: M = 1.83

• Computational domain: Octant symmetry, 0 ≤ x, y, z,≤ 25.6, ∆x = 0.2, 1283

grid points
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Single Black Hole
Illustration of Evolution of Lapse & Shift
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• Coordinate conditions
apparently quickly drive
metric to almost static
configuration, evolution
proceeds beyond t = 100M ,
and waveforms from
“perturbation” of BH and
subsequent ring-down can be
reliably extracted
(≈ 10−3MADM emitted.)
Source: Alcubierre et al
2001a
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Single Black Hole
Illustration of Evolution of Apparent Horizon Mass
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• The solid line shows the
development of the apparent
horizon mass, MAH during
the simulation of a
Schwarzschild black hole,
while the dashed lines show
the AH mass obtained using
2D and 3D codes with no
shift and no excision.
Source: Alcubierre et al
2001a
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Single Black Hole
(Yo, Baumgarte & Shapiro 2002)

• Consider Kerr hole in Kerr-Schild coordinates, adopt BSSN formalism

• Additional constraints

A ≡ γ̃ijÃij = 0

D ≡ det(γ̃ij) − 1 = 0

Gi ≡ Γ̃i − γ̃jkΓ̃i
jk = 0

• Imposed A, D dynamically by solving for Ãzz, γ̃zz in lieu of corresponding
evolution equations

• Modified ∂tΓ̃i via

∂tΓ̃i = · · · −
(

χ +
2
3

)
Gi∂jβ

j

where χ is an adjustable parameter chosen so that the overall factor in RHS of
evolution equation ∝ Γ̃i∂jβ

j is negative
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Single Black Hole
(Yo, Baumgarte & Shapiro 2002)

• For rapidly rotating holes, also used

∂tγ̃ij = · · · − κ1αCγ̃ij

where C = 0 is the Hamiltonian constraint.

• Coordinate conditions

• Slicing: “1 + log”
∂tα = Diβ

i − αK

• Shift: “Gamma driver”
∂tβ

i = λ∂tΓ̃i

as well as analytic (Kerr-Schild) value

• Computational domain: −12M ≤ x, y, z ≤ 12M ,
h = ∆x = ∆y = ∆z = 0.4M , 603 mesh points

• Finite differencing a la Alcubierre & Brügmann, and excision using both cubical
/ spherical surfaces
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Single Black Hole
Illustration of Long Time Stability
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• Plotted is the RMS of the
chance in K between
consecutive time steps as
functions of time for
evolutions of Schwarzshild
with octant symmetry.
Different lines correspond to
different choices of
coordinates as well as
modifications to original
BSSN equations mentioned
above
Source: Yo, Baumgarte &
Shapiro 2002

• Ran extensive series of experiments, with evolution times typically in range
3000− 6000M ; in many case seeing no evidence for instability, except as a → 1
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Single Black Hole
(Scheel et al, 2002)

• Consider Schwarzschild hole in Painlevé-Gullstrand (PG) coordinates

ds2 = −dt2 +

(
dr +

√
2M

r
dt

)2

+ r2dΩ2

at initial time, plus small perturbations, adopt KST formalism.

• Were particularly interested in isolating growth of constraint-violating modes
(CVMs), so wanted perturbations to be controlled (i.e. not simply due to
round-off)

• Used analytic results of Lindblom and Scheel 2002 showing that growth rate of
CVMs dependent only on {γ, ζ, ẑ}

• Explored {γ, ẑ} parameter space, other parameters fixed to Generalized
Einstein-Christoffel values from KST 2001.

• Coordinate conditions: densitized lapse, shift fixed to PG values
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Single Black Hole
(Scheel et al, 2002)

• Computational details: Pseudo-spectral collocation technique, domain is a
spherical shell 1.9M ≤ r ≤ 11.9M , method-of-lines (MOL) temporal
integration using fourth order Runge-Kutta

• Find quite sensitive dependence of instability growth on ẑ, less so for γ, and
considerable dependence on location of outer boundary.

• For appropriately tuned parameters, could achieve evolution times > 8000M ,
again using fixed coordinate conditions

• Not clear what would happen if outer boundary were moved to ∞
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Constraint Growth & Outer Boundary Impact
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• Instability growth as a function of
the location of the outer boundary
of the computational domain for the
evolution parameter values
γ = −12, ẑ = −0.425

Source: Scheel et al 2002
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Single Black Hole
(Anderson & Matzner 2003)

• Consider Schwarzschild hole in IEF coordinates

• Adopt standard ADM variables {γij, Kij} and equations

• Modify extrinsic curvature evolution equation

∂tKij = · · · − αC(0.464 γij + 0.36 Kij)

where C = 0 is the Hamiltonian constraint, and the numerical coefficients are
determined empirically to maximize evolution time

• Coordinate conditions: lapse (not densitized), shift fixed to IEF values

• Computational details: Spherical excision surface, fourth order spatial
discretization, appropriately one-sided near excision surface, variable order MOL
temporal integration

• Typical computational domain: −10M ≤ x, y, z ≤ 10M , h = M/5, 1003 mesh
points

• Achieve evolution time ≈ 1000M
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Single Black Hole
(Anderson & Matzner 2003)

• More interestingly, investigated constrained evolution—pre-solution of
constraints at each time step or every few steps)

• After initial explicit time advance of dynamical variables {γij, Aij}, view those
values as conformal trial functions {γ̃ij, Ãij}

• Then solve constraint equations for potentials ψ, Xi, and dress conformal
quantities to get new {γij,Kij} (for BCs, use ψ = 1, Xi = 0 at both inner and
outer boundaries)

• Demonstrated evolution times in excess of 200M even without “constraint
subtraction”
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Single Black Hole

• The 	2 norm of the Hamiltonian constraint violation for constrained and
unconstrained simulation of a Schwarzschild black hole with excision. Neither
simulation used any constraint subtraction. The simulations were performed at
a resolution of M/5 on a domain size of ±M .

Source: Anderson & Matzner 2003
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“Moving” Single Black Hole
(Sperhake et al 2003)

• Consider single Schwarzschild black hole in IEF coords., but then adopt
coordinate transformation

t = t̄

xi = x̄i + ξi(t̄)

with ξi chosen to produce circling or spiraling motion of hole in computational
domain

• Adopt BSSN approach and following Yo et al 2002, dynamically enforce
tracelessness of Aij and modify evolution equation for Γi

• Also use densitized lapse q
a = γ−n/2α

and find best results for n = 1

• Coordinate conditions: analytic shift, analytic lapse or compute dynamically via
“1 + log” condition
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“Moving” Single Black Hole
(Sperhake et al 2003)

• Outer boundary conditions: set to analytic values

• Computational details: Use O(h2)/O(h3) extrapolations of evolution equation
source terms/dynamical variables for updating excision boundary values as well
as for “populating” previously undefined sites, used both cubical and spherical
excision with similar results

• Static hole: computational domain (octant symmetry), 0 ≤ x, y, z ≤ 12M , 6p3

gird points, evolve for 10000M with no signs of instabilities

• Moving hole: computational domain (equatorial symmetry), typical run
−10M ≤ x, y ≤ 10M , 0 ≤ z ≤ 7M , 60 × 60 × 30 grid points

• Evolution times: 1000 − 6000M treatment of outer boundaries likely limiting
factor.

• ANIMATION: Rotating motion, K plotted.

• ANIMATION: Inspiral motion, K plotted.
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Two Black Hole Grazing Collision
(Brandt et al 2000)

• Initial data: Spinning holes, equal bare mass m, positioned at (±5m,±m, 0),
initial boost speed c/2, impact parameter 2m, orbital angular momentum, L, in
z direction

• Adopt traditional ADM/3+1 formalism, dynamical variables {γij,Kij}

• Considered three cases

• Both holes have a = 0.5m anti-aligned with L

• Both holes have a = 0
• Both holes have a = 0.5m aligned with L

• Superimpose two separately boosted Kerr-Schild (KS) datasets, e.g.

γij = δij + 2B1 (Hlilj)1 + 2B2 (Hlilj)2

where B1 (B2) are attenuation/blending functions that are 1 everywhere but
the vicinity of BH 2 (1), where they are 0
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Two Black Hole Grazing Collision
(Brandt et al 2000)

• Could take ansatz as conformal background and then resolve constraints but
argue that ansatz actually solves constraints to within level of truncation error
in discrete evolution scheme

• Coordinate conditions: Pre-merger

α = α1 + α2 − 1

βi = βi
1 + βi

2

where α1, α2, β
i
1, β

i
2 are computed from boosted KS and dynamically centred at

instantaneous location of holes

• Coordinate conditions: Post-merger: Use α, βi for single BH based on
M = M1 + M2, J = J1 + J2 + L
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Two Black Hole Grazing Collision
(Brandt et al 2000)

• Use excision technique and locate apparent horizon at each time step using a
combined direct finite difference solver and a flow method

• Outer boundary conditions: Dirichlet for γij, “blended” Dirichlet for Kij

• Computational domain: −10M ≤ x, y, z ≤ 10M , h = M/8, 1603 grid pts.

• Find similar results for all 3 runs; common apparent horizon forms promptly
(t ∼ 2M), evolutions end at t ∼ 15M

• Calculations suggest that > 2% of total ADM mass may be radiated as
gravitational waves, but must be viewed as very rough estimate
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Two Black Hole Grazing Collision
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• Time history of apparent horizon locations for grazing collision of two equal
mass black holes (bare mass m), each with a = 0.5m anti-aligned with the
orbital angular momentum. Times corresponding to (A)-(F) are t = 0, 2.6m,
5.1m, 8.8m, 13.8m and 18.8m. After the merger the horizon oscillates through
a fraction of a cycle

Source: Brandt et al 2000
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Two Black Hole Grazing Collision
(Alcubierre et al 2001b)

• Initial data: “Puncture type”, corresponding to black holes in mutual orbit:

R1 = (0, +1.5m, 0) R2 = (0,−1.5m, 0)
P1 = (+2m, 0, 0) P2 = (−2m, 0, 0)
S1 = (−m2/2, 0,−m2/2) S2 = (0,m2,−m2)

• Use BSSN formalism, essentially as described in Baumgarte & Shapiro 1998,
O(h2) spatial differencing, iterative Crank Nicholson time stepping,
approximate Sommerfeld outer boundary conditions

• Coordinate conditions: Solve maximal slicing condition at t = 0, use “1 + log”
slicing thereafter, βi = 0

• NO excision
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Two Black Hole Grazing Collision
(Alcubierre et al 2001b)

• Computational domain: −19m ≤ x, y, z,≤ 19M , h = 0.2M , 3873 grid points

• Evolution extended to t ∼ 30− 40M (about twice as long as Brandt et al 2000)

• Waveforms were extracted, with an estimated 1% of ADM mass emitted as
gravitational radiation

• As is case with Brandt et al computations, not clear that initial data really
represents two distinct holes
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Two Black Hole Grazing Collision

• The merger of the apparent horizon for the grazing collision described above.
Shown are marginally trapped surfaces at times 2.5M , 3.7M , 5.0M and 6.2M ,
where M ∼ 3.22m is the ADM mass of the spacetime and m is the initial bare
mass of each black hole. Source: Alcubierre et al 2001b
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Neutron Star Collisions
• Despite the complications of relativistic hydrodynamics, this type of calculation

is somewhat further advanced than the BH case, primarily because BH
singularities are not an issue until late phases of evolution (assuming that
collision does lead to BH formation)

• As with BH case, Cartesian coordinates are universally adopted for 3D work,
and finite difference approaches currently dominate

• Neutron star matter typically treated as a perfect fluid; stress tensor Tµν given
by

Tµν = (ρ + ρε + P )uµuν + Pgµν

where ρ, ε, P, uµ are baryon rest-mass density, specific internal energy, pressure
and fluid four velocity
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Neutron Star Collisions
• Initial conditions: Polytropic equation of state (EOS)

P = KρΓ Γ = 1 +
1
n

where K, n are the polytropic constant, index

• During evolution, use Γ-law EOS

P = (Γ − 1)ρε

• Γ = 2 typical choice (stiff EOS)

• Computational treatment of fluid

• Shocks major issue

• Artificial viscosity and simple upwinding schemes were traditional choices

• In past few years, high resolution shock capturing (HRSC) methods (higher
order Gudonov techniques) have become popular in numerical relativity
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Neutron Star Collisions
(Shibata, Taniguchi & Uryu 2003)

• Had previously focused on equal mass case, now consider unequal masses

• Had found in equal mass simulations that accretion disk formed as a result of
merger then collapse to BH was not very massive; suggested that equal-mass
collision was not a likely progenitor for gamma ray bursts (GRBs) (Most GRB
models invoke a BH with accretion disk ∼ 0.1 − 1M�)

• Argued that unequal mass interaction more likely to lead to massive disk

• Use formalism closely related to BSSN
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Neutron Star Collisions
(Shibata, Taniguchi & Uryu 2003)

• Coordinate conditions

• Approximate maximal slicing

∂τ lnα = ∆ lnα + (Di lnα)(Di lnα) + · · · + fαKg(ρ)

where fα is an O(1) constant, and the last term is chosen to drive solution
to K = 0. Discretized version typically applied about 30 times per time step.

• Dynamical shift condition

∂2
t βi = ∆fβi +

1
3
γik∂k∂jβ

j − S̃j

where ∆f is the flat-space Laplacian and S̃j are source functions. Produces
βi similar to that of “approximate minimal distortion”
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Neutron Star Collisions
(Shibata, Taniguchi & Uryu 2003)

• Initial conditions: Start with stars in quasiequilibrium circular orbits (assume
helical Killing vector), irrotational velocity fields; solve coupled set of elliptic
equations for hydrodynamic/geometric variables via pseudo-spectral technique

• Computational domain (typical case): −20M ≤ x, y ≤ 20M , 0 ≤ z ≤ 20M
(equatorial symmetry), 633 × 633 × 317 grid points; initially each star is
resolved by about 40 grid points

• ANIMATION: Unequal mass irrotational binary: no black hole formation

• ANIMATION: Unequal mass irrotational binary: black hole formation
Source of animations: http://esa.c.u-tokyo.ac.jp/∼shibata/anim.html

• Find ∼ 0.5% of ADM mass, ∼ 6 − 8% of initial angular momentum radiated
away.

• Calculations of similar scale, using very similar techniques have recently been
carried out by Miller, Gressmann and Suen 2003.
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Construction of Stable FD Schemes for NR
(Calabrese et al 2003)

• Approaches to finite differencing in NR have often been ad hoc, with much trial
and error particular with regards to boundaries, both outer and inner (e.g.
excision boundaries); again stability is key issue

• Authors apply techniques from numerical analysis of hyperbolic equations to
problem of 3D propagation of scalar field on Schwarzschild background

• Basic idea: Symmetric hyperbolic systems can be shown to be well posed
(stable) by defining an energy function (via a spatial integral), and showing
that it can be bounded as a function of the initial/boundary data; integration
by parts plays key role here

• Stable FD schemes for such systems can be constructed so that similar energy
estimates hold at the discrete level

• Four steps in construction

1. Equations are semi-discretized (time remains continuous) on finite-domain
with cubical region interior to BH excised; scalar product Σ between any two
grid function defined, which in turn allows definition of semi-discrete energy,
E; Σ and discrete spatial difference operator, D, must be carefully
constructed so that summation by parts (SBP) holds
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Construction of Stable FD Schemes for NR
2. At discrete level, boundary terms at edges and vertices of grid that remain

after SBP contribute to E at any given resolution; BC’s have to be imposed
on incoming characteristic modes along “effective” normal vectors so as not
to destroy energy estimate; technique used is to project RHSs of evolution
equations onto subspace of grid functions that satisfy discrete BCs

3. To minimize growth of error, add sub-truncation-order dissipation terms (a la
Kreiss & Oliger 1973, but suitably modified near boundaries) and
rewrite/rearrange discrete equations to ensure that optimal continuum
energy estimates hold at discrete level

4. Stability of fully discrete scheme ensured by use of temporal integration
scheme such as 3rd or 4th order Runge-Kutta that satisfies local stability
condition or that preserves energy estimate

• ANIMATION z = 0 cut of initially off-centre Gaussian pulse of scalar field
propagating on Schwarzschild background

• ANIMATION z = 0 cut of scalar field with l = 2 angular structure propagating
on Schwarzschild background

Source of animations:
http://relativity.phys.lsu.edu/movies/scalarfield
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Construction of Stable FD Schemes for NR
• Similar techniques have now been applied by LSU group to several other

problems:

• Sarbach & Lehner 2003: Investigation of possibility of naked singularity
formation in spherically symmetric bubble spacetimes

• Calabrese & Neilsen 2003: 2D (axisymmetric) simulations of massless scalar
field propagation on boosted Schwarzschild background using multiple
coordinate patches / FD meshes

• Tiglio et al 2003: 3D simulation of Schwarzschild hole with excision (also
includes dynamics lapse condition, and dynamical choice of
“constraint-multipliers” added to evolution equations in attempt to control
constraint violating modes)

• Expect that this work will have major impact on FD numerical relativity
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The Need for Mesh Adaptivity in Numerical
Relativity

• Problems of interest, particularly those involving black holes, span orders of
magnitude in spatio temporal scales

• Example: Inspiralling collision of two BHs

• Individual BHs: ∼ M

• Orbital scale: ∼ 10M

• Wave zone, where waveforms can be reliably read off: ∼ 100M

• Temporal scales: ∼ M− ∼ 1000M

• Slow rate of progress in 3D finite difference NR is in part attributable to use of
“unigrid” codes (those characterized by a single discretization scale, h.
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The Need for Mesh Adaptivity in Numerical
Relativity

• Moore’s Law: Computational power doubles roughly every 1.5 years; 10 years ∼
7 doublings resulting in about a factor of 100 in resources (CPU speed,
memory)

• 3+1-D problem, execution time scales like h−4, 100 fold increase buys about a
factor of 3 in resolution!

• Much effort has been expended over the past decade and more to incorporate
mesh refinement techniques in NR; basic idea is to allow h to be a function of
space and time, so that resolution can be adapted to solution features

• Specific algorithm due to Berger & Oliger 1984 has had most impact in this
area.
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Adaptive Mesh Refinement (AMR)
(Berger & Oliger 1984)

• Employ hierarchy of locally uniform finite difference meshes, organized into
levels, l = 0, 1, 2, · · · , lmax with discretization scales satisfying

hl ≡ ρlhl+1

where ρl are integers. Typically for 3D applications, ρl = ρ = 2

• 1+1 example: lmax = 2, ρ = 2
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Adaptive Mesh Refinement (AMR)
(Berger & Oliger 1984)

• Refine in time as well as in space, take coarse time steps first in order to
provide boundary conditions on fine grids (at fine-coarse interfaces, a.k.a. AMR
boundaries) via interpolation

• Remesh dynamically, typically using estimate of local error in solution

• Example: Consider two-level explicit finite difference scheme at discretization
scale h; write time-advance update as

un+1 = Qhun

where Qh is the one-time-step update operator

• Then (
QhQh − Q2h

)
un

provides an estimate of the local solution error
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Adaptive Mesh Refinement (AMR)
(Berger & Oliger 1984)

• Shortcomings:

• Have to deal with AMR boundaries, additional stability considerations often
arise

• Only “optimally efficient” (in computational complexity sense) if solution
features are volume filling

• Assumes locality of influence (i.e. designed for hyperbolic systems),
algorithm requires modification if elliptic equations must also be solved,
some successful strategies exist (Pretorius 2002)
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Potential Speed-up using AMR
(Pretorius 2003)

• Case analysis for equal-mass BH merger

• Assumptions

• Finest level grids cover each BH, diameter 2M

• Linear filling factor of 1/2 (i.e. at each level, only 1/8 of the volume requires
subsequent refinement)

• 2:1 refinement ratio (ρ = 2)

• Outer boundary at LXM

• Evolution to t = LTM

• Courant factor ≡ ∆t/∆x = 1/2
• Finest level lmax = log2(LX) is sufficiently large that

lmax−1∑
n=0

(
1
2

)n

∼ 2
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Potential Speed-up using AMR
(Pretorius 2003)

• Speed-up:
TUNI

TAMR
≈ CUNI

2CAMR
(LX)3 ≈ (LX)3

where T ≡ run time, C ≡ computational cost per grid point

• For LX = 100, we have a potential speed-up of order 106, equivalent to 30 yrs
of Moore’s Law!
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2D Axisymmetric AMR
(Pretorius 2002, Choptuik et al 2003b)

• Added Berger & Oliger AMR capability to previously developed axisymmetric
code (Choptuik et al 2003a) that incorporates a massless scalar field as the
matter source

• Axisymmetric code adopts 2+1+1 formalism (Geroch 1971, Maeda et al 1980),
but for rotation-free case, is equivalent to standard ADM approach

• Metric & Stress Tensor: (cylindrical coordinates)

ds2 = −αdt2 + ψ4
[
(dρ + βρdt)2 + (dz + βzdt)2 + ρ2e2ρσ̄dφ2

]

Tµν = 2Φ,µΦ,ν − gµνΦ,σΦ,σ

• Introduce conjugate variables, Ω̄ ∼ ∂tσ̄, Π ∼ ∂tΦ
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2D Axisymmetric AMR
(Pretorius 2002, Choptuik et al 2003b)

• System of PDEs

• Evolution equations for Φ, Π, σ̄, Ω̄, and optionally ψ, solved using O(h2)
centred differencing techniques; iterative Crank Nicholson update

• Coupled elliptic equations for α, βρ, βz, ψ, solved using O(h2) FD methods
and multigrid

• Study critical collapse (black hole threshold behaviour) of massless scalar field

• Consider parameterized families of initial data representing gaussian spherical
shells of scalar field, family parameter is overall amplitude factor, which is then
tuned to machine precision

• ANIMATION: Near critical solution displayed in logarithmic radial coordinate

• ANIMATION: Same evolution, but in original cylindrical coordinates, and with
continuous “zoom-in” on critical region
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Illustration of Adaptive Remeshing

• Calculation used 24 2:1 levels of refinement. Figures show every other grid line.
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3D Fixed Mesh Refinement
(Schnetter et al 2003)

• Approach very similar to Berger & Oliger, except that refinements are specified
in advance based on a priori knowledge of solutions features, and do not move
in time

• Algorithm is simplified since there is no need for truncation error estimation
and the concomitant regridding process

• Implemented as a “Driver thorn” for Cactus, which in principle should facilitate
use by large number of extant and future Cactus applications (i.e. will work in
parallel)
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3D Fixed Mesh Refinement
(Schnetter et al 2003)

• Presented series of test calculations, each using a single level of 2 : 1 refinement
(i.e. one coarse grid, one fine grid)

• Wave equation in flat space

• Minkowski spacetime with small perturbations (“robust stability test”)

• “Gauge wave” (Minkowski in time/space-dependent coordinates)

• Schwarzschild BH with excision

• For most part find that adaptive runs have similar accuracy, convergence
properties as unigrid runs at finest resolution

• Not surprisingly, find that special attention must be paid to refinement
boundaries for stability
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3D AMR
(Pretorius in progress)

• Has implemented Message Passing Interface (MPI)-based library to support
parallel adaptive mesh refinement of Berger & Oliger type

• Also incorporates support for multigrid solution of elliptic PDEs

• Currently studying 3D critical scalar collapse using a generalized harmonic code

∇α∇αxµ = Hµ

with the Hµ chosen to avoid coordinate singularities

• Has included apparent horizon detection and excision

• Uses spatially compactified coordinates that facilitate setting precise outer
boundary conditions (asymptotic flatness), but which induce reflections that
preclude accurate long-time integrations

• Typical calculation: Two blobs of scalar field, set up to promptly collapse to
form BHs, track subsequent BH dynamics
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Illustration of 3D AMR - Head on BH Collision

• Upper left: Bounding boxes
delineating different levels

• Upper right: Bounding boxes
showing parallel distribution

• Lower left: z = const. slice of lapse
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Orbiting Black Holes
(Brügmann, Tichy & Jansen 2003)

• Key advance: Construction and use of co-moving coordinate system in
conjunction with fixed mesh refinement technique

• Initial data: Puncture data for 2 equal mass BHs, no spin, on quasi-circular
orbit based on approximate helical Killing vector

• Use modified form of BSSN equations (Alcubierre et al 2001a), with simple
excision technique described in Alcubierre & Brügmann 2001

• Use excision, with spherical excision surfaces that are fixed in time

• Slicing condition
∂tα = −2αKΨ4

where Ψ is the time-independent Brill-Lindquist conformal factor (1/α in the
puncture approach)

101

Orbiting Black Holes
(Brügmann, Tichy & Jansen 2003)

• Initialize shift so that if BHs were point particles in a circular orbit, coordinate
system would be exactly co-moving; involves introduction of angular and radial
velocities ω, ṙ

• Periodically recompute ω(t), ṙ(t) and adjust shift to keep “centers” of BHs (as
determined by asymmetry of α along excision boundaries) near the punctures

• Impose Sommerfield outer boundary conditions generalized to rigid rotation

• Use fixed mesh refinement with up to 7 levels of 2:1 refinement, use single (fine
grid) time step; yields small ∆t/∆x near the outer boundary which is crucial
due to superluminal shifts

• Evolutions last more than one orbit, and no common apparent horizon is
detected for sufficiently large initial separations

• Computations still crash eventually, but clearly this is an exciting advance.
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Conclusions & Open Issues
• 3D Numerical relativity has seen SUBSTANTIAL progress in past few years

• Improved theoretical understanding of hyperbolic forms of Einstein’s
equations

• Improved stability of free evolution schemes based on such forms

• Positive identification of unphysical (constraint violating) modes in free
evolution schemes, and the beginning of developments aimed at controlling
them

• Improved theoretical understanding of boundary conditions, and beginnings
of effective numerical implementations thereof

• Improved theoretical understanding of construction of astrophysically realistic
initial data for binary inspiral, and development of very efficient and accurate
codes for the solution of the IVP

• Beginnings of development of effective coordinate conditions for scenarios
such as binary inspiral

• Introduction of “provably stable” FD techniques

• Development of effective numerical strategies for black hole excision

• Widespread use of parallel computation

• Beginnings of application of adaptive mesh refinement to 3D problems
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Conclusions & Open Issues
• Open Issues

• SEE PREVIOUS LIST!

• Constrained vs free evolution: given relatively glacial progress in solving even
the problem of simulating Schwarzschild, is view that elliptic equations are
simply too expensive misguided, particularly when methods with optimal
scaling (i.e. linear cost in the number of grid points) exist?

• Computational demands
• Time scale for “production” 3D runs is still weeks or even months; many

problems not identified until large-scale, long-time computations are
attempted—adaptivity and/or spectral techniques should help

• Parameter space exploration adds additional “dimensionality” to any
problem of significant interest and is easy to forget about when doing
development work

• Analysis
• When 3D NR begins to produce results of physical interest, how will the

physics be extracted/understood? Huge amount of data will be generated
and efficient and effective analysis tools will become just as important (if
not more so) than the underlying code itself

• Advanced interactive visualization/analysis systems likely to play a crucial
role, and continued development on this front is needed
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