Smale's Mean Value Conjecture

Bl. Sendov

The lecture is a survey of classic conjectures in the geometry of polynomials, starting with the famous Mean Value Conjecture of S. Smale, which states:

Conjecture 1 (Smale) Let p(z) be a polynomial of degree n such that p(0) = 0 and $p'(0) \neq 0$. Then

$$\min\left\{ \left| \frac{p(\zeta)}{\zeta p'(0)} \right| : p'(\zeta) = 0 \right\} \le K, \tag{1}$$

where K = 1 or probably (n-1)/n.

In 1958, the author formulated the following:

Conjecture 2 Let $p(z) = (z - \zeta_1)(z - \zeta_2) \cdots (z - \zeta_n)$ be a polynomial of degree $n \ge 2$ with all its zeros on the closed unit disk. Then each closed disk with center ζ_k ; k = 1, 2, ..., n and radius 1 contains a critical point of p(z)

Until now, the two conjectures are not proved in general, see [1, p. 214 - 240]. Hundreds of papers dedicated to the conjectures employ usually the classical instruments as the Gauss - Lucas theorem and a polarity, where the position of the critical points of a polynomial is located from the fixed position of its zeros. The motivation of the lecture is to demonstrate a reverse approach. The critical points of the polynomial are fixed and the zeros are functions of the constant term of the polynomial.

References

 RAHMAN, Q. I. AND SCHMEISSER, G., Analytic Theory of Polynomials, Oxford Univ. Press Inc., New York, (2002).