Qualifying Exam - Algebraic Topology May 27th, 2021

Do all six problems You may use standard formulae for computations.

- (1) (a) Show that S¹ × S¹ and S¹ ∨ S¹ ∨ S² have isomorphic homology groups in all degrees.
 (b) Show that they are not homotopy equivalent in two ways:

 (i) by considering the homology groups of their universal covers
 (ii) by considering their cohomology rings.
- (2) (a) Compute the fundamental groups of $\mathbb{R}P^2 \vee \mathbb{R}P^2$ and $\mathbb{R}P^2 \times \mathbb{R}P^2$.
 - (b) Show that $\mathbb{R}P^2 \vee \mathbb{R}P^2$ is not a retract of $\mathbb{R}P^2 \times \mathbb{R}P^2$.
 - (c) Show that any map $f: \mathbb{R}P^2 \vee \mathbb{R}P^2 \to S^1$ is null-homotopic.
- (3) Let F be the complement of an open disk in the torus $S^1 \times S^1$. Determine all connected surfaces that arise as 3-fold covers of F.
- (4) Let Y be a CW complex where

$$H_i(Y;\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } i = 0, 2, \text{ or } 4\\ \mathbb{Z}/12\mathbb{Z} & \text{if } i = 1\\ 0 & \text{otherwise} \end{cases}$$

Calculate the cohomology groups $H^*(Y; \mathbb{Z})$ and $H^*(Y; \mathbb{Z}/2\mathbb{Z})$.

- (5) Suppose M is a compact orientable *n*-manifold whose boundary ∂M is a rational homology sphere, i.e. $H_*(\partial M; \mathbb{Q}) = H_*(S^{n-1}, \mathbb{Q})$. Use Poincare Duality to show that M has Euler characteristic $\chi(M) = 1$.
- (6) Let $Y = \mathbb{R}P^3/\mathbb{R}P^1$. That is, Y is the quotient space $\mathbb{R}P^3/\sim$ where the equivalence relation \sim collapses the standard $\mathbb{R}P^1 \subset \mathbb{R}P^3$ to a single point.
 - (a) Determine the integral homology of the pair $(\mathbb{R}P^3, \mathbb{R}P^1)$ and of the space Y.
 - (b) Compute $\pi_1(Y)$.

$$Hom(A,B) = \frac{A\backslash B \mid \mathbb{Z} \quad \mathbb{Z}/m}{\mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z}/m} Ext(A,B) = \frac{A\backslash B \mid \mathbb{Z} \quad \mathbb{Z}/m}{\mathbb{Z}/n \mid \mathbb{Z}/n \mid \mathbb{Z}/m}$$
$$For(A,B) = \frac{A\backslash B \mid \mathbb{Z} \quad \mathbb{Z}/m}{\mathbb{Z}/n \mid \mathbb{Z}/m}$$