PRELIMINARY EXAM

AUGUST 2008

1. Let (X, d) be a metric space, $A \subset X$, and $x \in X$. Prove that a point x is in the closure of A if and only if there is a sequence $x_n \in A$ which converges to x.

2. Prove that every continuous map $f : [0,1] \to [0,1]$ has a fixed point. Is the same true for continuous maps $(0,1) \to (0,1)$?

3. Let \mathbb{R}_{ℓ} be the real line with the lower limit topology, that is, topology whose basis consists of all half-open intervals of the form [a, b).

- (1) Determine the path components of \mathbb{R}_{ℓ} .
- (2) Describe all continuous functions $f : \mathbb{R} \to \mathbb{R}_{\ell}$, where \mathbb{R} stands for the real line with the standard topology.

4. Let $f : X \to Y$ be a continuous bijection of a compact space X to a Hausdorff space Y. Show that f is a homeomorphism.

5. For which values of a does the hyperboloid defined by $x^2 + y^2 - z^2 = 1$ intersect the sphere $x^2 + y^2 + z^2 = a$ transversely? What does the intersection look like for different values of a?

6. The orthogonal group O(n) consists of all $n \times n$ matrices A such that $AA^t = E$, where E is the identity matrix.

- (1) Evaluate the tangent space to O(n) at $E \in O(n)$.
- (2) Prove that O(n) is compact.
- 7. Let $f: S^2 \to S^2$ be a smooth map.
 - (1) Can a point $q \in S^2$ have infinitely many preimages?
 - (2) Prove that the set of points $q \in S^2$ with infinitely many preimages has measure zero.
 - (3) Prove that, if f is not surjective, it is homotopic to a constant map.
- 8. Show that the vector field on $\mathbb{R}^2 \{(0,0)\}$ given by

$$F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

has zero curl but cannot be written as the gradient of any smooth function $f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}.$