MS TOPOLOGY QUALIFYING EXAM AUGUST 2009

- (1) Given a set X, let \mathcal{T} be the collection of all subsets U of X such that X U is either finite or all of X. Show that \mathcal{T} is a topology on X.
- (2) Prove or give a counterexample: A continuous bijective map from one topological space to another is a homeomorphism.
- (3) A subspace $A \subset \mathbb{R}^n$ has the property that every continuous function $f: A \to \mathbb{R}$ attains its maximum on A. Show that A must be compact.
- (4) For points $x, y \in \mathbb{R}^2 \{0\}$ impose $x \sim y$ if and only if x and y lie on the same line through the origin of \mathbb{R}^2 . Show that $\mathbb{R}^2 \{0\}/\sim$ with the quotient topology is homeomorphic to a circle.
- (5) Prove or give a counter example: A smooth homeomorphism from one smooth manifold to another is a diffeomorphism.
- (6) Prove that the set X of all non-zero 2×2 real matrices A such that AA^t is diagonal is a submanifold of $\mathbb{R}^4 = M_{2\times 2}(\mathbb{R})$. What is the dimension of X? Is X compact? (A^t denotes the transpose of A.)
- (7) Prove there is no non-vanishing vector field on the sphere S^2 . On what connected, closed, compact, orientable surfaces does a non-vanishing vector field exist? What about for surfaces with boundary?
- (8) Suppose Z_0 and Z_1 are compact, cobordant, *p*-dimensional smooth submanifolds of a smooth manifold X. Prove that

$$\int_{Z_0} \omega = \int_{Z_1} \omega$$

for every closed *p*-form ω on X.