MS TOPOLOGY PRELIMINARY EXAM

AUGUST 2011

- (1) Let A be a subset of a topological space X. Prove that A is open in X if and only if every point in A has a neighborhood contained in A.
- (2) Let \mathbb{R}^{ω} be the countably infinite product of \mathbb{R} with itself.
 - A. Define both the product topology and the box topology on \mathbb{R}^{ω} .
 - B. Consider the function $f \colon \mathbb{R} \to \mathbb{R}^{\omega}$ given by f(t) = (t, t, t, ...). Prove that f is continuous when \mathbb{R}^{ω} is given the product topology but not when given the box topology.
- (3) A. Define both terms *connected* and *path connected*.
 - B. Prove or give a counterexample: A path connected topological space is connected.
 - C. Prove or give a counterexample: If $A \subset X$ is a path connected subset of a topological space, then its closure \overline{A} is necessarily path connected.
- (4) Prove that a closed subspace of a compact space is compact.
- (5) Let $f: X \to \mathbb{R}$ be a smooth function on a smooth, compact, boundaryless manifold X. Suppose 0 is a regular value. Prove that $f^{-1}(0)$ is diffeomorphic to the boundary of some smooth compact manifold W.
- (6) Let X be a compact smooth manifold, Y be smooth manifold, and Z be a closed smooth submanifold of Y.
 - A. Define what it means for the smooth function $f: X \to Y$ to be transversal to Z.
 - B. Define what it means for two smooth functions $f_0, f_1: X \to Y$ to be homotopic.
 - C. Show if $f_0, f_1: X \to Y$ are homotopic and both transversal to Z, then $I_2(f_0, Z) = I_2(f_1, Z)$. (That is, show their mod 2 intersection numbers with Z are equal).
- (7) Let $r = \sqrt{x^2 + y^2}$. For each non-negative integer n, determine whether the 1-form

$$\omega_n = \frac{-y\,dx + x\,dy}{r^n}$$

defined on $\mathbb{R}^2 - \{(0,0)\}$ is closed and whether it is exact.