TOPOLOGY PRELIMINARY EXAM

AUGUST 2013

1. Let X be a topological space. Prove that $A \subset X$ is open if and only if each point of A has an open neighborhood contained in A.

2. Prove that the following two statements about a subspace $A \subset \mathbb{R}^n$ are equivalent :

- (a) A is compact,
- (b) every continuous function $f: A \to \mathbb{R}$ attains its maximum on A.

3. Let A_1, A_2, \ldots be a sequence of connected subspaces of a topological space X such that $A_n \cap A_{n+1}$ is non-empty for all n. Prove that the union $\bigcup A_n$ is connected.

4. Recall that ℓ^2 is the metric space of all infinite sequences $\mathbf{x} = (x_1, x_2, ...)$ of real numbers such that the series $\sum x_n^2$ converges, with the metric

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum (x_n - y_n)^2\right)^{1/2}.$$

Let $A \subset \ell^2$ consist of all sequences **x** that are eventually zero, meaning that $x_n = 0$ for all but finitely many n.

- (a) Prove that A is dense in ℓ^2 .
- (b) Use part (a) to prove that ℓ^2 is a separable topological space.

5. Prove that \mathbb{R}^k and \mathbb{R}^ℓ are not diffeomorphic unless $k = \ell$.

6. Prove that the 2-sphere S^2 does not retract onto its equator $S^1 \subset S^2$, that is, there is no smooth map $r: S^2 \to S^1$ whose restriction to S^1 is the identity.

- 7. Let $\omega = (3 + 2xy) dx + (x^2 3y^2) dy$ be a 1-form on the xy-plane.
 - (a) Is ω closed?
 - (b) Is ω exact?

8. Let $f_0, f_1 : X \to Y$ be homotopic maps between compact oriented manifolds of dimension n. Prove that for all closed *n*-forms ω on X, we have

$$\int_X f_0^* \omega = \int_X f_1^* \omega.$$