MS TOPOLOGY PRELIMINARY EXAM

JUNE 2011

- (1) Let X be a topological space. Prove that a subspace $A \subset X$ is dense if and only if its complement has empty interior.
- (2) Let (X, d) be a compact metric space with continuous contraction f: X → X. (The function f is a contraction if there exists a number α < 1 such that d(f(x), f(y)) < αd(x, y) for any distinct points x, y ∈ X.)
 Show there exists a unique point x ∈ X such that f(x) = x.
- (3) Let $f: X \to Y$ be a function between topological spaces. Prove f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for any subset A in X. (Here, \overline{S} denotes the closure of the set S.)
- (4) Prove the Intermediate Value Theorem:
 Let f: X → Y be a continuous map of the connected space X to the ordered set Y in the order topology. If a and b are two points of X and r is a point of Y between f(a) and f(b), then there exists a point c of X such that f(c) = r.
- (5) Prove the graph of $f(x,y) = \sqrt{x^2 + y^2}$ is homeomorphic but not diffeomorphic to \mathbb{R}^2 .
- (6) For which values of r > 0 does $H = \{x^2 + y^2 z^2 w^2 = 1\} \subset \mathbb{R}^4$ transversally intersect $S_r^3 \subset \mathbb{R}^4$, the 3-sphere of radius r centered at the origin?
- (7) Let X be a smooth, compact, boundaryless n-manifold and $f: X \to \mathbb{R}^n$ a smooth map. Prove that f must have a critical point.
- (8) Consider the 2-form $\omega = z \, dx \wedge dy$ on \mathbb{R}^3 . (a) Is ω exact? (b) Let |z| = 1 be the set of \mathbb{R}^3 be the set of $z \to 1$ for $z \to 1$ for z \to 1 for $z \to 1$ for $z \to 1$ for $z \to 1$
 - (b) Let M be the paraboloid $z x^2 y^2 = 1$ in \mathbb{R}^3 . Is the restriction of ω to M exact?