TOPOLOGY PRELIMINARY EXAM

JUNE 2021

1. Let \mathbb{R}^{ω} be the Cartesian product of countably many copies of the real line, and $f: \mathbb{R} \to \mathbb{R}^{\omega}$ the diagonal function $f(x) = (x, x, \dots, x, \dots)$.

- (a) Is f continuous with respect to the product topology on \mathbb{R}^{ω} ? Explain.
- (b) Is f continuous with respect to the box topology on \mathbb{R}^{ω} ? Explain.
- **2.** Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions defined by the formula

$$f_n(x) = \begin{cases} \frac{1}{n} \sqrt{n^2 - x^2}, & \text{if } |x| < n, \\ 0, & \text{if } |x| \ge n. \end{cases}$$

- (a) Show that the sequence $f_n(x)$ converges pointwise and find its limit.
- (b) Does the sequence $f_n(x)$ converge uniformly? Explain.
- **3.** Prove or disprove the following statements with brief but complete reasoning:
 - (a) Any infinite set with the finite complement topology is connected.
 - (b) The real line with the lower limit topology is connected.
 - (c) The complement of the central circle in the Möbius band is connected.
 - (c) The union of the graphs $y = e^x$ and y = 0 in the coordinate xy-plane is connected.

4. Let X be a Hausdorff topological space and suppose that you are given a nested collection $\ldots \subset C_n \subset C_{n-1} \subset \ldots \subset C_2 \subset C_1$ of non-empty compact subspaces of X. Prove that the intersection

$$C = \bigcap_{n=1}^{\infty} C_n$$

is non-empty and compact.

5. Prove that the set $X = \{ (x, y) \in \mathbb{R}^2 \mid x^2 = y^3 \}$ is not a smooth manifold.

6. Let S^1 be the unit circle $x^2 + y^2 = 1$ in the coordinate xy-plane. Find all the critical points of the function $f: S^1 \to \mathbb{R}$ given by the formula f(x, y) = xy.

7. Let X be a compact smooth oriented manifold with boundary. Prove that there does not exist a smooth retraction of X onto its boundary ∂X .

8. Let the Euclidean space \mathbb{R}^4 have coordinates x, y, z, and w. Integrate the differential 2-form

$$dz \wedge dw + xz \, dy \wedge dw$$

over the torus $T \subset \mathbb{R}^4$ given by the equations $x^2 + y^2 = 1$ and $z^2 + w^2 = 1$.